Analysis of an Iodine absorption cell for the new TIGRE adapter

Outline

•Why use an Iodine cell?

High-res analysis of the cell

Determining the parameters

Schedule for the adapter

lodine cells for wavelength calibration

Pioneered by Marcy&Butler (1992)

Marcy&Butler (1992)

Iodine cells for wavelength calibration

We model the spectrum (taken through the absorption cell), $I_{abs}(\lambda)$, as

$$I_{\text{obs}}(\lambda) = k[I_s(\lambda + \Delta\lambda_s)T_{I_2}(\lambda + \Delta\lambda_{I_2})] \otimes \text{PSF}.$$
 (1)

Here, $\Delta \lambda_s$ and $\Delta \lambda_{I_2}$ are the shifts of the star spectrum and iodine transmission function, respectively, and the symbol \otimes represents convolution. The constant k is proportional to the exposure level of the observation. In operation, $\Delta \lambda_s$, $\Delta \lambda_{I_2}$, and k are determined by least-squares fitting to the observed, composite spectrum, I_{obs} .

The final, corrected Doppler shift, $\Delta \lambda$, is simply given by

$$\Delta \lambda = \Delta \lambda_s - \Delta \lambda_{I_s}, \qquad (2)$$

which is converted to a velocity by the Doppler formula:

$$\lambda = \lambda_0 \frac{(1 + \beta \cos \theta) (1 + \rho_g)}{n(1 - \beta^2)^{1/2}}.$$
 (3)

Marcy&Butler (1992)

Our Iodine cell

Manufactured by A.Hartzes (Tautenburg)

•6cm diameter

Heating foil

•Rel. large iodine content

High-resolution measurements

- Collaboration with A.
 Reiners' group (Göttingen)
- •Bruker IFS 125HR
- Fourier Transform spectrometer
- •Up to R=2000000

The spectra

Adapter: Schedule

•2/17: final design

•2-4/17: manufacturing of parts

Assembly and programming until 6/17

Transport and assembly in GTO: Autumn 17