Interstellar absorption features in the spectra of nearby stars

Sebastian Kohl

4th Tigre workshop 2015

Sebastian Kohl ()

Interstellar absorption features in the spectra 4th Tigre workshop 2015 1 / 16

Introduction

- Influence of interstellar matter on "stellar" spectra
- What is known about the local environment?
- Contamination by Telluric lines
 - Really important?

Inter-comparison between F-stars

- Stellar Properties
- Results

Comparison between PHOENIX models and data

- DIB (5780Å)
- interstellar Na D lines

Comparison between solar models and measured spectra What is better? PHOENIX or ATLAS?

Interstellar Clouds

Figure: How interstellar matter influences stellar spectra.

... and their spectra

Figure: DIB detection of interstellar features in HD 183143.

... and their spectra

Figure: NaD detection of interstellar features in HD 183143.

- most easily found in distant and early-type stars
- strong dependence of the line of sight
- in solar neighbourhood:
 - search in spectra of early-type stars
 - low equivalent-widths:
 - NaD in $d < 70 \,\mathrm{pc} \rightarrow \mathrm{generally \ below \ 10 \ m}$ Å.
 - DIB in $d < 200 \text{ pc} \rightarrow \text{generally below } 100 \text{ mÅ}.$
- Farhang et al. 2015:
 - search in $\tau Boo d = 64 \text{ pc}$ (Hipparcos)
 - 137 mÅ (DIB at 5780Å)
 - 407 mÅ (D2)
 - 344 mÅ (D1)

Contamination by Telluric lines

Figure: Top panel: uncorrected stellar spectrum of α CrB (red), corrected stellar spectrum (green). Bottom panel: telluric transmission spectrum.

Inter-comparison between F-stars

Figure: Top panel: Comparison of τ Boo (green) and HD 33608 (red). Bottom panel: residuals (black) and Gaussian fit (blue).

Figure: Top panel: Comparison of τ Boo (green) and HD 33608 (red). Bottom panel: residuals (black) and Gaussian fit (pink).

DIB in τ Boo's sight line?

Figure: Spectrum of τ Boo (red) and PHOENIX models (blue). Bottom panel: residuals (black).

DIB in τ Boo's sight line?

Figure: Spectrum of τ Boo (red) and PHOENIX models (blue). Bottom panel: residuals (black) and Gaussian fit (blue).

Interstellar Na in τ Boo's sight line?

Figure: Spectrum of τ Boo (red) Voigt profile fit (blue). Bottom panel: residuals (black) and Voigt fit (blue).

Interstellar Na in τ Boo's sight line?

Figure: Spectrum of τ Boo (red) and PHOENIX models (blue).

Interstellar Na in τ Boo's sight line?

Figure: Spectrum of τ Boo (red) and PHOENIX model (blue). Broadened to R=2,000. Original observation (green).

Solar lines around 5780Å

Figure: Comparison of observed (red) solar spectrum to different models. Blue: PHOENIX. Green: ATLAS.

Solar Na D lines

Figure: Comparison of observed (red) solar spectrum to different models. Blue: PHOENIX. Green: ATLAS.

- neither a DIB nor a Na D feature of abnormal strength could be found
- low spectral resolution leads to blending and thus complicates the detection of interstellar features
- discrepancies also in solar spectra
 - inaccuracies in atomic line lists
 - concept of metallicity ill defined
- Thank you for your attention!
- Questions?