

Long-term monitoring of AR LAC with TIGRE

The AR Lac system

The brightest (V = 6.1 mag) RS CVn system ($42.67 \pm 0.05 \text{ pc}$)

Figure: To-scale sketch of the AR Lac system.

THE LIGHT CURVE

Total and partial eclipses

Figure: Light curve of the AR Lac system (from Siviero et al. 2006).

X-RAY EMISSION OF AR LAC

Long-term X-ray light curve of AR Lac (Drake et al. 2010, ApJ 783, 2).

 $L_X pprox (8\pm1) imes 10^{30} \ {
m erg/cm^2/s}$ over 33 yr

TIGRE DATA OF AR LAC

Figure: Orbital phase distribution of Tigre data

- First spectrum: 14. Aug. 2014
- No. of spectra: 128 (1 per 3 days)
- Total exposure time: 33.6 h (\approx 8.8 h/yr)

THE CA H&K EMISSION LINES

Phase evolution of Ca H&K emission lines

THE CA H&K EMISSION LINES

Phase evolution of the Ca K line(s). Filled circles before Aug. 2016.

CA H&K vs. $H\alpha$

ECLIPSE TIME VARIATIONS

Figure: Eclipse time variations in AR Lac with respect to ephemeris given by Cester 1967 (from Siviero et al. 2006).

Spectral models based on Kurucz atmospheres:

Component	T_{eff}	$\log(g)$
Primary	5500 K	4.0
Secondary	5000 K	3.5

Spectral fit using various combinations of free parameters: $v \sin(i)$, rv, relative contribution, normalization.

Figure: Spectrum (blue) and model (red) along with residuals (green).

Rotational velocities:

 $v \sin(i)_P = 46 \text{ km/s}$ and $v \sin(i)_S = 69 \text{ km/s}$ \rightarrow Compatible with bound rotation

Relative contribution at \approx 6100 Å:

 $\begin{array}{l} \mbox{Primary contributes} \approx 30\% \mbox{ of flux} \\ \rightarrow \mbox{Compatible with published radii and temperatures} \end{array}$

RADIAL VELOCITIES

RVs for primary (blue) and secondary (red) with model (dashed).

Parameter	Tigre	Frasca & Lanza 2000
K ₁	116.8 ± 0.3 km/s	117.4 - 119.4
K ₂	103.2 ± 0.3 km/s	106.7
RV_0	$-35.6\pm0.2~\text{km/s}$	

Phase shift?

RADIAL VELOCITIES

Required shift with respect to ephemeris by Cester 1967: $\approx -0.32~\text{d}.$

SUMMARY

Tigre obtained \approx 4 yrs (33.6 h, 128 spectra, 1 per 3 days) of AR Lac.

With Tigre we can

- distinguish the individual spectral components,
- phase-resolve activity tracers (Ca H, H α , Ca IRT)
- determine timing variations from RVs,
- study activity on both stars.

Tigre produced a unique long-term spectral time series to study activity and orbital evolution.