The long-period massive binary HD 54662 revisited

Enmanuelle Mossoux, Laurent Mahy & Gregor Rauw 2018, A&A, in press (arXiv: 1802.06535)

Enmanuelle Mossoux

1 HD 54662

2 Optical analysis

3 X-ray analysis

4 Conclusion

HD 54662

HD 54662

- Brightest and earliest member of the CMa OB1 association (Gies 1987)
- 07 Vz var? (Sota et al. 2014)
- Runaway (Noriega-Crespo et al. 1997; Peri et al. 2012)
- Orbital period still debated: 92 days (Stickland & Lloyd 2001), 558 days (Boyajian et al. 2007), 2103 days (Le Bouquin et al. 2017)
- $i=74.87^\circ$ (Le Bouquin et al. 2017)

WISE image (red=22.2 μ m, green=12.1 μ m, blue=3.4 μ m)

XMM-Newton image (red=0.2-0.7 keV, green=0.7-6.6 keV, blue=6.6-10 keV)

Optical analysis

Orbital solution

Spectra: 15 TIGRE + HEROS, 13 UT2 + UVES, 9 MPI2.2 + FEROS, 1 NOT + FIES, 1 CFHT + ESPaDOnS

- Spectral disentangling $_{\text{(González & Levato 2006)}} \rightarrow \text{new RVs}$
- Fourier method on new and archival RVs ightarrow $P = (2104 \pm 13)$ days
- SB1 solution with LOSP $_{\text{(Sana et al. 2006)}} \rightarrow$ $P = (2103.4 \pm 3.3)\,\text{days}$
- SB2 solution (only new RVs) with LOSP and P = 2103.4 days

	Primary	Secondary	80
m_2/m_1	0.843 ± 0.032		
$v_0 ({\rm km s^{-1}})$	42.5 ± 1.2	$\textbf{35.9} \pm \textbf{1.2}$	60 88 -
е	0.11 ± 0.02		
$K (\mathrm{km} \mathrm{s}^{-1})$	19.3 ± 0.6	22.9 ± 0.7	
ω (°)	240.9 ± 10.9		
T ₀ (HJD-2450000)	6084 ± 62		
$a \sin i (R_{\odot})$	797 ± 24	945 ± 28	20 - `*
$m \sin^3 i (M_{\odot})$	8.72 ± 0.64	7.35 ± 0.53	
$rms\;(kms^{-1})$	1.72	2.52	0
			0 0.5 1

φ

Optical analysis

Reconstructed spectra

- He I λ 4471 + He II λ 4542 lines (Conti & Alschuler 1971; Conti & Frost 1977) \rightarrow O6.5 stars
- $L_1/L_2 \sim 2$
- $v_1 \sin i = 43 \,\mathrm{km}\,\mathrm{s}^{-1}$ using He I λ 4713 line
- $v_2 \sin i = 158 \text{ km s}^{-1}$ using He I $\lambda \lambda$ 4144, 4388, 4471, 4713, He II $\lambda \lambda$ 4200, 4542 and Mg II λ 4481 lines

Model atmosphere fitting

Effective temperatures and surface gravities:

- Non-LTE atmosphere code CMFGEN (Hillier & Miller 1998)
- Chemical species: H, He, C, N, O, Si, S, Ne, Mg, Al, Ar, Fe, and Ni

	Primary	Secondary
$T_{\rm eff}$ (K)	37700 ± 1000	37500 ± 1000
log g	$\textbf{3.96} \pm \textbf{0.1}$	$\textbf{3.81}\pm\textbf{0.1}$

Abundances (Martins et al. 2015; Mahy et al. 2017):

- Carbon: C III $\lambda\lambda$ 4068-70 lines
- Nitrogen: triplet around 4515 Å

	Primary	Secondary	Sun
He/H	0.1	0.1	0.089
C/H	$(2.6 \pm 0.3) imes 10^{-4}$	$(2.3 \pm 0.2) imes 10^{-4}$	$2.69 imes10^{-4}$
N/H	$(2.3 \pm 0.3) imes 10^{-4}$	$(9.5 \pm 1.5) imes 10^{-5}$	$6.76 imes10^{-5}$

• $m_1=9.7\pm0.7M_\odot$ and $m_2=8.2\pm0.6M_\odot$ using $i=74.87^\circ
ightarrow$ very low for

O-type stars (Martins et al. 2005; Weidner & Vink 2010)

• $i = 38^{\circ}$ leads consistent masses

- $m_1 = 9.7 \pm 0.7 M_{\odot}$ and $m_2 = 8.2 \pm 0.6 M_{\odot}$ using $i = 74.87^{\circ} \rightarrow$ very low for O-type stars (Martins et al. 2005; Weidner & Vink 2010)
- $i = 38^{\circ}$ leads consistent masses

Bias in the astrometric solution of Le Bouquin et al. (2017)?

- Our $a/\sin(38^\circ) = a$ from Le Bouquin et al. (2017) $\rightarrow d = 1.27$ kpc (close to 1.2 kpc Kaltcheva & Hildlich 2000)
- Our a/ sin (74.87°) = a from Le Bouquin et al. (2017) ightarrow 800 ${
 m pc}$ << 1.2 kpc
- BUT orbit nearly circular \rightarrow robust determination of *i*

- $m_1 = 9.7 \pm 0.7 M_{\odot}$ and $m_2 = 8.2 \pm 0.6 M_{\odot}$ using $i = 74.87^{\circ} \rightarrow$ very low for O-type stars (Martins et al. 2005; Weidner & Vink 2010)
- $i = 38^{\circ}$ leads consistent masses

Bias in the astrometric solution of Le Bouquin et al. (2017)?

- Our $a/\sin(38^\circ) = a$ from Le Bouquin et al. (2017) $\rightarrow d = 1.27$ kpc (close to 1.2 kpc Kaltcheva & Hildlich 2000)
- Our a/ sin (74.87°) = a from Le Bouquin et al. (2017) ightarrow 800 m pc << 1.2 kpc
- BUT orbit nearly circular \rightarrow robust determination of *i*

Bias in our RV solution?

- $m_1 = 28 M_{\odot}$ in SB1 solution with $i = 74.87^{\circ}$ & $m_2/m_1 = 0.53 < 0.84 \pm 0.03$
- $m_1=28M_\odot$ and $m_2/m_1=0.53$ ightarrow $m_2=14.8M_\odot$ ightarrow for B0-type star
- $\bullet~$ BUT sharp-lined primary star \rightarrow robust determination of its orbital solution

- $m_1 = 9.7 \pm 0.7 M_{\odot}$ and $m_2 = 8.2 \pm 0.6 M_{\odot}$ using $i = 74.87^{\circ} \rightarrow$ very low for O-type stars (Martins et al. 2005; Weidner & Vink 2010)
- $i = 38^{\circ}$ leads consistent masses

Bias in the astrometric solution of Le Bouquin et al. (2017)?

- Our $a/\sin(38^\circ) = a$ from Le Bouquin et al. (2017) $\rightarrow d = 1.27$ kpc (close to 1.2 kpc Kaltcheva & Hildlitch 2000)
- Our a/ sin(74.87°) = a from Le Bouquin et al. (2017) ightarrow 800 ${
 m pc}$ << 1.2 kpc
- BUT orbit nearly circular \rightarrow robust determination of *i*

Bias in our RV solution?

- $m_1 = 28 M_{\odot}$ in SB1 solution with $i = 74.87^{\circ}$ & $m_2/m_1 = 0.53 < 0.84 \pm 0.03$
- $m_1=28M_\odot$ and $m_2/m_1=0.53$ ightarrow $m_2=14.8M_\odot$ ightarrow for B0-type star
- $\bullet~$ BUT sharp-lined primary star \rightarrow robust determination of its orbital solution

Pair of sub-dwarf O stars?

- sdO masses < HD 54662 minimum masses</pre>
- sdO $\log g$ > HD 54662 $\log g$
- sdO luminosities < HD 54662 luminosity

X-ray analysis

X-ray observations

- 2 XMM-Newton observations
- Phases: 0.40 & 0.75
- Distance between the stars: d/a = 1.094 & 1.012
- Presence of a shock between the two winds ?

X-ray analysis

X-ray flux from the wind interaction zone

- Spectral fitting of the 2 XMM-newton observations with an absorbed APEC model
- $\bullet\,$ Change of the spectral parameters by less than $20\%\,$
- No significant change of the unabsorbed flux
- log $\frac{L_x}{L_{\rm bol}} = -6.76 \pm 0.04 \rightarrow$ consistent with both the canonical values for single and binary O-type stars (Nazé 2009)
- Adiabatic wind-shock model (Canto et al. 1996)
 - \rightarrow overestimation of the X-ray flux
 - ightarrow overestimation of the mass-loss rate and terminal velocities
 - \rightarrow "weak-wind problem" (Bouret et al. 2003; Marcolino et al. 2009)

X-ray analysis

Bow shock around HD 54662

 $\bullet\,$ Excess in infrared at 4' from the binary: $\mathit{I}(60\mu\mathrm{m})/\mathit{I}(100\mu\mathrm{m})=0.59\pm0.04$

(Noriega-Crespo et al. 1997; Peri et al. 2012)

- No X-ray counterpart
- Peculiar RV = $(10.3\pm3.5)\,{
 m km\,s^{-1}}$ < 30 km s $^{-1}$ threshold for runaways

(Cruz-González et al. 1974)

- Peculiar tangential velocity (40.1 \pm 11.5) km s^{-1} < (42 + $\sigma)$ km s^{-1} $_{\rm (Moffat et al. 1998)}$
- \Rightarrow HD 54662 is a walk-away binary
- \Rightarrow Bow shock created by interaction with the ionized gas of CMa OB1

Continuum-corrected H α image+WISE bowshock

HD 54662

- is composed of two nitrogen-enriched O6.5 stars with faint ($L_1/L_2 \sim 2$) and rapidly rotating (158 km s⁻¹) secondary
- has a nearly circular orbit (e = 0.11) with P = 2103.4 days
- contains surprisingly low mass stars
- \bullet has very soft and non-variable X-ray emission \rightarrow wind-shock emission fainter than our expectations
- is a walk-away binary
- forms an infrared bow shock via interaction with CMa OB1

To be done:

- Constrain the masses of the stars (very low-mass O-type stars ?)
- Determination of their mass-loss rate and terminal velocities (lower than typical O-type stars ?)

Supplementary material

Simultaneous fit of astrometric and RV data

PRELIMINARY results from a private communication with Jean-Baptiste Le Bouquin (April 24, 2018).

P (days)	2107.79
T ₀ (HJD-2450000)	6164.5
<i>d</i> (pc)	823.1
<i>a</i> (mas)	10.4
i (°)	74.8
e	0.07
ω (°)	75.3
Ω (°)	23.1
$v_0 ({\rm km s^{-1}})$	42.5
$K (\mathrm{km}\mathrm{s}^{-1})$	19.7 (P) / 23.0 (S)
$m (M_{\odot})$	18.8 (P) / 10.1 (S)
L_{2}/L_{1}	1.28