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ABSTRACT

We examine the S-index data, obtained in the context of the Mount Wilson H&K project for the nearby F-type star τ Boo, for the
presence of possible cyclic variations on timescales below one year and “phase jump” episodes in the observed S-index activity
levels, to determine whether such features are persistent properties of the chromospheric activity of τ Boo and possibly other late-type
stars. Within the Mount Wilson H&K project τ Boo was observed during 1278 individual nights, albeit with a very inhomogeneous
coverage ranging from 2 to 137 observations per year. Our analysis shows that periodical variations with timescales on the order
of 110–120 days are a persistent feature of the Mount Wilson data set. Furthermore we provide further examples of “phase jump”
episodes, when the observed S-index activity drops from maximum to minimum levels on timescales of one to two weeks, hence such
features also appear to occur on a more or less regular basis in τ Boo.
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1. Introduction

Recently the data obtained in the context of the so-called Mount
Wilson H&K project have been publicly released and become
available to the astronomical community at large. The hitherto
most complete description of this Mount Wilson monitoring
data set has been presented by Baliunas et al. (1995), who dis-
cuss the S-index “light” curves of 112 stars; one of these is
τ Boo (=HD 120136), which shows, according to Baliunas et al.
(1995), a chromospheric cycle of 11.6 ± 0.5 yr. τ Boo is a bright
(mV = 4.5 mag) star of spectral type F7 with an M2 type com-
panion, which was observed several thousand times during the
Mount Wilson program. In addition to the 11.6 yr cycle de-
scribed by Baliunas et al. (1995) there is evidence for cyclic vari-
ability on substantially shorter timescales.

τ Boo is now one of the brightest known planet hosts.
τ Boo b, a so-called hot Jupiter, was discovered by Butler et al.
(1997) with an orbit period of 3.3 days, which is very close to the
rotation period of τ Boo A. For these reasons and its substantial
magnetic activity, the τ Boo system is very interesting also from
the point of view of star-planet-interaction (SPI). Lanza (2013)
describes a theoretical framework linking a magnetic interaction
between star and planet and shows that such effects could signif-
icantly enhance evaporative effects due to EUV and X-ray radi-
ation from the host. As far as τ Boo is concerned, Shkolnik et al.
(2008) present Ca II K data and argue that these data may indi-
cate SPI, however, it is probably fair to say that actual observa-
tional clear-cut demonstrations of SPI are still very elusive.

Mittag et al. (2017) describe an S-index variability of τ Boo
with a timescale of about 120 days observed in the years 2013–
2016 with the TIGRE facility (Schmitt et al. 2014) and show
that the same period is also consistent with cyclic variability at
X-ray wavelengths. Similarly, Mengel et al. (2016), using their

S-index time series taken with the NARVAL instrument in the
years 2007–2015, deduce a 117-day period; we identify this pe-
riod with the 116-day period previously mentioned, but not de-
scribed by Baliunas et al. (1997). Furthermore, based on spec-
tropolarimetric observations with ESPaDOnS and NARVAL,
subsequent Zeeman Doppler Imaging by Donati et al. (2008)
provides evidence for magnetic field reversals on τ Boo; fur-
ther observations of polarity changes with the same instrumen-
tal setup have been reported by Fares et al. (2009), Fares et al.
(2013), and by Mengel et al. (2016), and the observed field re-
versals suggest a possible magnetic cycle of 240 or 740 days.

Using their TIGRE monitoring data, Mittag et al. (2017)
show that the maxima of the S-index data might well be associ-
ated with polarity reversals of τ Boo as is observed for the Sun,
so that the “magnetic” cycle period would be twice as large. Fi-
nally, Mittag et al. (2017) report a “phase jump” of the activity
cycle of τ Boo, i.e., an episode in the spring of 2016, when the
activity more or less suddenly dropped from maximum to mini-
mum values. The purpose of this research note is to investigate to
what extent similar phenomena are present in the Mount Wilson
time series of τ Boo.

2. Observations and data analysis

2.1. Mount Wilson data

As already mentioned, the data obtained in the context of the
Mount Wilson Project have recently been publicly released and
can be downloaded1. A detailed description of the data is also
provided at this web site. The available data specifically include
the star identification; the calibrated S index, which we use in

1 From ftp://solis.nso.edu/MountWilson_HK/
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Fig. 1. Mount Wilson S-index time series of τ Boo.

this paper as the basis for our analysis; an instrument code indi-
cating with which instrument the data was taken; and the date of
the observation as well as other material.

Naturally, it suggests itself to investigate whether the
star τ Boo also shows similar phenomena as observed in recent
years and reported by Mittag et al. (2017) in the Mount Wil-
son time series. In the context of the Mount Wilson Program,
τ Boo has been intensively observed for more than 30 yr and the
data base lists more than 4000 entries of individual observations.
However, a closer inspection of these data shows that, normally,
τ Boo was observed three times per night, in a few cases even
more often, and in one single night more than 100 observations
had been obtained. On the other hand, especially in the early
years, there is typically only one observation per night available.
All observations available within a single night were averaged to
obtain a more homogeneous data set and so we end up in this
fashion with observations of τ Boo in 1278 individual nights
spread over the years 1967–2001. In Table 1 we provide a list
with the number of nights per year when τ Boo was observed. In
every year between 1967 and 2001 H&K observations of τ Boo
have been carried out, the number of nights varies from 2 (in
1980) to 137 (in 1984). The “light curve” produced from this
data is shown in Fig. 1. One recognizes a few outliers with S-
index values above 0.25, which are ignored in our subsequent
analysis.

2.2. Discrete autocorrelation function

One of the methods to determine recurrent structures and periods
in light curves is autocorrelation analysis. Normally one assumes
data with equidistant temporal spacing, in which case the calcu-
lation of the autocorrelation for a given time lag τ is straight-
forward and described in every text book. In data collected in
the context of ground-based astronomy (or geophysics for that
matter) the recorded time series are usually irregularly sampled
and hence the computation of, for example, an autocorrelation
function becomes a bit more cumbersome.

While it is possible to resample a given light curve onto a
regularly spaced time grid, in our opinion any application of
such methods is precluded by the way astronomical data are usu-
ally sampled (for example, seasonal variations). In the context of
AGN work, Edelson & Krolik (1988) introduced the so-called
discrete correlation function as a method to compute cross- or
autocorrelations without the need to interpolate any data. Briefly,
their method works as follows: we let s(t) be some function that
is sampled at some (nonequidistant) times ti, i = 1,N with values

Table 1. Overview of available τ Boo Ca II H&K observations obtained
in the Mount Wilson (MW) and TIGRE programs.

Year Number of nights Program
1967 4 MW
1968 5 MW
1969 11 MW
1970 17 MW
1971 10 MW
1972 11 MW
1973 12 MW
1974 12 MW
1975 19 MW
1976 14 MW
1977 20 MW
1978 5 MW
1979 12 MW
1980 2 MW
1981 36 MW
1982 69 MW
1983 63 MW
1984 137 MW
1985 83 MW
1986 88 MW
1987 46 MW
1988 62 MW
1989 33 MW
1990 6 MW
1991 14 MW
1992 52 MW
1993 35 MW
1994 79 MW
1995 22 MW
1996 58 MW
1997 81 MW
1998 50 MW
1999 34 MW
2000 47 MW
2001 29 MW
2014 77 TIGRE
2015 73 TIGRE
2016 88 TIGRE

si = s(ti). We can then consider all pairs of data points, which
are characterized by some pairwise lag ∆ti, j = ti – t j; since we
are dealing with autocorrelation functions (rather than crosscor-
relation functions) we need to consider only positive lags (i.e.,
i > j). We let s and σs denote the first two moments of the
distribution function of the function s(t), the unbinned discrete
autocorrelation function UBAF is defined as

UBAFi, j =
(si − s) ∗ (s j − s)

σ2
s

· (1)

Edelson & Krolik (1988) point out that in the case of data with
significant errors the denominator in Eq. (1) has to be modified
to σ2

2 − e2
s , where es is a typical error; since in our case the in-

trinsic scatter of the data is much larger than the measurement
errors, we use Eq. (1) as is. Each time lag pair contributes to-
ward the estimate of the discrete autocorrelation function (DAF),
which can be constructed (in binned form) as follows: to deter-
mine DAF at some lag τ,we identify all time lag pairs, satisfying
τ−∆τ/2 < ∆ti, j < τ+ ∆τ/2, where ∆τ is the spacing of the time
lags where the DAF is calculated. We let there be M such pairs,
then

DAF(τ) =
〈UBAFi, j〉

M
· (2)
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Fig. 2. Discrete autocorrelation function of Mount Wilson S-index time
series (solid histogram). The dashed histograms denote the maximum
values of the autocorrelation functions at the 0.67%, 90%, 99%, and
99.9% level; see text for details.

Edelson & Krolik (1988) proceed with providing some error es-
timates for the so-constructed function DAF(τ). We compute er-
rors by bootstrapping the data using permuted data sets with
the same temporal sampling as the original data. Performing
these calculations on the Mount Wilson data of τ Boo (shown in
Fig. 1), we obtain the DAF shown in Fig. 2 (solid histogram); the
dashed histograms show the extent of the 10 000 bootstrapped
realizations comprising 67.5%, 90%, 99%, and 99.9% of the au-
tocorrelation values at each time lag considered. As is clear from
Fig. 2, there are highly significant autocorrelations in the DAF
of the Mount Wilson τ Boo data. We recognize a peak at small
time lags, while periods of ≈50 days have no measurable auto-
correlation. For periods of ≈120 days and ≈240 days, however,
we find a non-zero autocorrelation at a significance of more than
99.99%. The autocorrelation error distribution is asymmetric and
attains maximal values at about 190 days or half a year. This can
be attributed to the observing pattern of τ Boo, which can be
observed well from about January to August.

As a sanity check, we perform the same computations as car-
ried out for τ Boo for the daily solar Sun spot record, available
online2. That Sun spot record dates back to 1818, prior to that
date the available daily observations are too sparse. We further
note that the 198 yr since then comprise about 18 solar cycles,
while the approximately 36 yr of Mount Wilson monitoring of
τ Boo correspond to about 144 cycles. In order to simulate the
seasonal Mount Wilson sampling we sample the solar data with
the same sampling pattern as encountered for τ Boo and ob-
tain the DACF for the Sun spot record shown in Fig. 3, which
clearly shows the solar 11-yr cycle and its harmonics. So clearly,
the DACF retrieves the known solar cycle from the daily sun
spot data when observed with a typical astronomical sampling
pattern.

2.3. Lomb Scargle analysis

In order to characterize any periodicities in the activity of τ Boo
further and to identify possible changes in the periodicity pat-
tern, we investigate the changes on shorter timescales as follows.
Since τ Boo disappears behind the Sun for a few months, it is
natural to group the available data into observation seasons. Fol-
lowing our TIGRE approach, we then consider three adjacent
seasons and up in this fashion with a total of 11 periods each

2 For example, at the web site http://www.sidc.be/silso/
datafiles

Fig. 3. Same as Fig. 2, but for solar sun spot record.

Table 2. LS period analysis in Mount Wilson data.

Time span Number of nights Period Probability
1967–1970 37 too few data n.a.
1971–1973 33 too few data n.a.
1974–1976 45 115 day <0.999
1977–1979 37 too few data n.a.
1980–1982 107 114 day >0.9999
1983–1985 283 85,112 day >0.9999
1986–1988 196 87 day, 120 day >0.9999
1989–1991 53 110 day <0.997
1992–1994 166 90, 118 day >0.9999
1995–1997 161 123 day >0.9999
1998–2000 131 90, 121 day >0.9999

Notes. We list the observing seasons, the total number of available
nights, the identified periods and an estimate of their significance.

comprising three observation seasons. We list the dates of these
observational periods and the number of nights with observa-
tions of τ Boo in Table 2. Since we are interested only in vari-
ations on short timescales, we rectified the data for each season
by subtracting the respective mean for that season.

Zechmeister & Kürster (2009) derive a generalized Lomb-
Scargle (LS) periodogram and show that the normalized power
spectrum p(ω) at some frequency ω is given by the expression

p(ω) =
χ2

0 − χ
2(ω)

χ2
0

, (3)

where χ2
0 and χ2(ω) are the values of the χ2 statistics at frequency

values of zero and ω, respectively. Given some observed data oi
(i = 1...N) at times ti with errors σi the χ2 statistics is calculated
as usual through

χ2 =

N∑
i=1

(
mi − oi

σi

)2

, (4)

and the model values mi at times ti are given by

mi = m(ti) = A sin(ωti) + B cos(ωti) + C, (5)

and Zechmeister & Kürster (2009) present an analytical solu-
tion for the best-fit coefficients A–C and, hence, the normalized
power p(ω).

For the calculation of the significance of the power
recorded at some frequency, we do not follow the approach by
Zechmeister & Kürster (2009); rather we perform repeated per-
mutations of the measurements while keeping the observed times
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Fig. 4. Lomb Scargle diagram for the Mount Wilson τ Boo data taken
between 1983–1985 (solid line); we also indicate the confidence levels
of 0.675, 0.954, 0.9973, 0.999, and 0.9999, respectively.

Fig. 5. Lomb Scargle diagram for the Mount Wilson τ Boo data taken
between 1989–1991 (solid line); confidence levels are given as in Fig. 4.

the same and carry out a LS analysis of the so-permuted data
sets. In this fashion all biases introduced by the temporal sam-
pling pattern of the observations are maintained for the error
analysis. To compute the significance we therefore compute pre-
determined percentiles of the computed normalized power distri-
butions of the permutation at each frequency under investigation.

In Figs. 4 and 5 we show two examples of our analysis.
In each case we performed 1 000 000 random permutations to
compute confidence levels of the derived periods. In Fig. 4 one
clearly sees a highly significant signal at a period of about four
months in addition to a signal at around 85 days, both of which
are highly significant well above the 99.99% level. On the other
hand, the peak near 160 days is probably a feature introduced
by the data sampling, since also the bootstrapped periodograms
show a peak near that period. In Fig. 5 again a signal near a pe-
riod of about four months is apparent, however, the significance
is below the formal “3σ” level. The periodogram in Fig. 4 was
computed from 283 data points and that in Fig. 5 was computed
from 53 data points, indicating the need for dense sampling to
reach reliable conclusions on the presence of periodicities in the
data.

2.4. Phase jumps

A “phase jump” episode was recorded in the TIGRE S index.
In the spring of 2016 the cycle changed its phase by almost
180 degrees, jumping almost from maximum to minimum levels

Fig. 6. Mount Wilson S-index time series in observing season 1984
(upper panel) and 1985 (lower panel). The solid lines denote best-fit
sine waves; the dashed line in the lower panel denotes the extrapolation
of the 1984 best-fit solution into 1985; see text for details.

Fig. 7. Mount Wilson S-index time series in the year 1993 (upper panel)
and TIGRE S-index time series in the year 2006 (lower panel); see text
for details.

and thereupon rising again. It is obvious to check whether in
the Mount Wilson time series there are also signatures of such
phase jumps. Clearly, phase jumps can be recognized only in
rather densely sampled time series. In the Mount Wilson series
these are the years 1983–1986, with a particularly dense sam-
pling available for the year 1984 with 137 different nights. The
available data (in 1984) cover six months from January to June
and hence cover almost two of the τ Boo activity cycles. In Fig. 6
we show a close-up view of the Mount Wilson data for the ob-
serving season 1984 (upper panel) and 1985 (lower panel); for
each season we removed the trends and brought all data to the
same mean value per season. For each observing season we fit
a sine wave with a period of 120 days (solid lines in Fig. 6) to
the data, we also propagated the best fit from observing season
1984 into observing season 1985 (dashed line in lower panel of
Fig. 6). It appears that some time in the second half of 1984 a
“phase jump episode” occurred that was very similar to that ob-
served in the spring of 2016.

A second possible “phase jump episode” is visible in the
Mount Wilson data taken in 1993. In upper panel of Fig. 7 we
plot the Mount Wilson τ Boo S-index time series; it appears that
between days 5105 and 5115, i.e., a ten-day period for which
there is unfortunately no data, a jump from close to maximum
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to close to minimum values occurred. For comparison, in the
lower panel we show the TIGRE light curve from 2016 (taken
from Mittag et al. 2017), where a similar phase jump between
day 13 460 and day 13 465 occurred. Therefore activity phase
jumps appear to occur on τ Boo, however, the available data cov-
erage precludes us from determining a frequency or occurrence
pattern of such events.

3. Discussion and conclusion

We have inspected the data obtained for τ Boo in the context
of the Mount Wilson monitoring program for the occurrence of
shorter term periodicities. Specifically we investigated to what
extent evidence for the four-month cycle recently described by
Mittag et al. (2017) can be found in this data series. Using both
the technique of discrete autocorrelation functions and the tech-
nique of Lomb Scargle periodograms, we find strong evidence
for the occurrence of periodicities at a period of about 120 days
or four months in these data; other shorter periods, especially at
90 days, may also be present in the data. Therefore a cycle with
a period of about 120 days seems to be consistently present in
τ Boo between at least 1967, when the Mount Wilson observa-
tions started and 2016 with the TIGRE observations reported by
Mittag et al. (2017). These 49 yr in the life of τ Boo correspond
to approximately 147 cycles; in the case of the Sun this number
would correspond to more than 1600 yr of continuous cyclic
activity. The Mount Wilson time series also provides evidence
for phase jumps in the observed Ca activity, however, in
general, the temporal sampling of the data is usually too coarse
for definite conclusions. There is, naturally, substantial scatter
in the data and almost nightly sampling is required to distinguish

the intrinsic scatter from deterministic variations in the data. It is
obvious that the dense monitoring of the Mount Wilson S index
is a good and observationally very simple method to study the
activity cycle of a star such as τ Boo. It would clearly be in-
teresting to accompany these measurements with simultaneous
magnetic field measurements and Zeeman Doppler images and
check to what extent magnetic topologies change during phase
jumps of the activity cycle.
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