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ABSTRACT

We present a new radial velocity curve for the two components of the eclipsing spectroscopic binary α CrB. This binary consists
of two main-sequence stars of types A and G in a 17.3599-day orbit, according to the data from our robotic TIGRE facility that is
located in Guanajuato, Mexico. We used a high-resolution solar spectrum to determine the radial velocities of the weak secondary
component by cross-correlation and wavelength referencing with telluric lines for the strongly rotationally broadened primary lines
(v sin(i) = 138 km s−1) to obtain radial velocities with an accuracy of a few hundred m/s. We combined our new RV data with older
measurements, dating back to 1908 in the case of the primary, to search for evidence of apsidal motion. We find an apsidal motion
period between 6600 and 10 600 yr. This value is consistent with the available data for both the primary and secondary and is also
consistent with the assumption that the system has aligned orbit and rotation axes.
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1. Introduction

Almost every physics text book treats the Kepler problem: the
motion of two point-like masses under their mutual gravitational
attraction, with the result (known already to Newton) that the or-
bits are closed ellipses in an orbital plane fixed in space. In prac-
tice, astrophysical bodies are not point-like, and both rotation
and tidal forces lead to non-spherically symmetric and even non-
axisymmetric mass distributions that do produce pure 1

r poten-
tials. Furthermore, perturbations by other bodies in the system as
well as relativistic effects may also play a role. As a result, the
actual orbits of the bodies are only approximately described by
ellipses, and both the parameters of the orbit ellipse and the or-
bit plane itself are subject to periodic or secular changes. These
effects are well known in the solar system, where the relativis-
tic perihelion advance enjoys the greatest prominence, since this
advance provides one of the best-known tests of general rela-
tivity. It is often overlooked, however, that Mercury’s relativis-
tic perihelion advance (of 43′′ per century) constitutes only less
than one percent of the overall perihelion advance observed for
Mercury, which can be entirely accounted for by classical me-
chanics (see discussion in Misner et al. 1973).

In stellar astrophysics the analog to Mercury’s perihelion ad-
vance is known as apsidal motion, and quite a few studies of
apsidal motion have been carried out in the past decades in bi-
nary systems with eccentric orbits; a catalog of such systems
has been presented by Petrova & Orlov (1999, 2002) and Bulut
& Demircan (2007). In this context, systems such as DI Her
(Claret et al. 2010) appeared puzzling since they seemed to
defy general relativity. Studying the Rossiter-McLaughlin effect,
Albrecht et al. (2009) were able to demonstrate, however, that a
misalignment of the orbit and spin axes in DI Her is responsible

for this ostensible contradiction; more recently, an extensive re-
view of this effect was reported as well (Albrecht 2012).

Shakura (1985) derived an expression (his Eq. (3)) for the
expected apsidal motion in a binary system in an eccentric or-
bit that is subject to tidal forces, allowing arbitrary orientations
of the rotation axes of both components and including the ex-
pected relativistic contribution to the observed apsidal motion.
The expected relativistic contribution depends only on the to-
tal mass, the semi-major axis and the system eccentricity, that
is, parameters that can be rather straightforwardly measured (at
least for eclipsing systems). The tidal and rotational terms, in
contrast, depend on the rotation rates and the orientation of the
rotation axes of both components, as well as on the so-called
internal structure constants (Hejlesen 1987), which describe the
mass concentration inside the stars. These latter parameters are
far more difficult to observe, and the structure constants can only
be inferred from models. Therefore, a measurement (and correct
interpretation) of apsidal motion allows observational inferences
both on the interior stellar structure and on the orientation of ro-
tation and orbit axes, which explains the great interest in apsidal
motion measurements in a stellar astrophysics context.

Naturally, double-lined eccentric eclipsing systems are par-
ticularly interesting in this context: the eclipses allow a deter-
mination of the inclination angle i of the orbital plane, the line
systems a determination of the projected rotational velocities and
Rossiter-McLaughlin measurements of both components, and fi-
nally, apsidal motion can be addressed either through measuring
the evolution of the orbit parameters or through eclipse-timing
measurements, since the period between two subsequent primary
and secondary eclipses differs (Rudkjøbing 1959).

One of the few binary systems for which all these mea-
surements are possible is the system α CrB, which is – after
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δ Vel (cf. Pribulla et al. 2011) – the second-brightest known
eclipsing system; a detailed review of the system has been given
by Tomkin & Popper (1986). The α CrB system consists of an
A- and G-type dwarf star in a 17.36-day orbit with substan-
tial eccentricity (ε ≈ 0.37). Since the system is viewed almost
edge-on (i = 88.2◦), both the primary eclipses, when the sec-
ondary G-type star appears in front of the brighter A-type pri-
mary, and secondary eclipses with the opposite viewing config-
uration can be observed. Light-curve modeling yields radii of
3.04 and 0.92 R�, respectively, for the primary and secondary
components (Tomkin & Popper 1986), which means that the pri-
mary eclipse is only partial, while the G-type component is en-
tirely occulted by the primary component during the secondary
eclipse.

α CrB is also a spectroscopic binary with lines from both
components visible in the spectrum. Therefore a full solution of
the binary orbit is possible, as is a determination of individual
stellar masses and radii. Tomkin & Popper (1986) derived accu-
rate system parameters for both components from their own ob-
servations of the secondary component (taken in the years 1979–
1984) and from the primary component (taken in the years 1959–
1961 by Ebbighausen 1976 and from the photometry of Kron &
Gordon 1953) and concluded that the primary component, that
is, α CrB A, is a slightly evolved star of spectral type A0, while
the secondary is a G5 star essentially on the zero-age main se-
quence and therefore young, at least when compared to the Sun.
This finding is in line with the X-ray emission observed from
the α CrB system, first detected by Schmitt & Kürster (1993),
who demonstrated the total nature of secondary minimum, when
the system’s X-ray flux is totally eclipsed. This means that the
whole X-ray emission from the system is produced by the late-
type companion, in line with the standard rotation-age-activity
paradigm (Schmitt & Kürster 1993).

Finally, the α CrB system is very interesting from its evo-
lutionary point of view: the secondary’s rotation velocity of
≈15 km s−1, as reported by Tomkin & Popper (1986), corre-
sponds to a rotation period of about five days, and the primary’s
rotational velocity of 138 km s−1 (Royer et al. 2002) corresponds
to a period shorter than one day, which means that both rotation
periods are much shorter than the orbit period of 17.3599 days.
The system is therefore neither synchronized nor circularized,
which makes the question of the alignment of the rotation axes of
the two components with the orbit axis particularly interesting.

The very rapid rotation of the primary in the α CrB system
is expected because it does not possess any convective enve-
lope, which is required for the dissipation of angular momen-
tum in interaction with tidal bulges (see Zahn 1989). By con-
trast, the G-star primary with its convective envelope has already
slowed down noticeably, although it still rotates much faster
than the Sun. The rapid primary rotation gives rise to substan-
tial quadrupole moments in the external gravitational field and
thus to apsidal motion, given the system’s eccentricity. Volkov
(1993, 2005) discussed timing measurements of the eclipses of
α CrB, Schmitt (1998) presented and discussed X-ray eclipse
measurements of the secondary eclipse of α CrB, and Volkov
(2005) argued that all the available eclipse measurements sug-
gest apsidal motion at a level much lower than theoretically ex-
pected. Thus it seems appropriate to address the question of ap-
sidal motion in the α CrB system from the point of view of radial
velocities (RV), since with our new TIGRE data taken in 2014,
radial velocity data spanning more than 100 years (!) are now
available for the primary, and radial velocity data spanning more
than 50 years for the secondary to study any secular evolution
of the system. We emphasize that the method presented in this

paper is applicable to any eccentric binary system with sufficient
temporal data coverage, which also means non-eclipsing sys-
tems; we will address the question of the periods between pri-
mary and secondary minima in a separate paper (cf. Schmitt,
in prep.).

The plan of our paper is as follows: in Sect. 2 we present
new radial velocity data of the two components of α CrB taken
in 2014 with our TIGRE facility, in Sect. 3 we address the ques-
tion of apsidal motion in the α CrB system and summarize our
approach to modeling the radial velocities curves observed over
the past 100 years. In Sect. 4 we present our conclusions. A few
formulae that we used in our analysis and that are scattered over
the literature are summarized in an appendix.

2. Observations and data analysis

The new observations we present here have been carried out with
the TIGRE facility, a new robotic spectroscopy telescope located
in central Mexico at the La Luz Observatory of the University of
Guanajuato. The TIGRE 1.2 m telescope is fiber-coupled to an
échelle spectrograph with a spectral resolving power exceeding
20 000 over most of the covered spectral range between 3800 Å
and 8800 Å, with a small gap of about 130 Å around 5800 Å.
The distinct feature of TIGRE is its robotic operation, that is, it
(normally) carries out all observations without any human inter-
vention. A robotic system such as TIGRE does require a fully
automatic data reduction pipeline including an automated wave-
length calibration, which is implemented in the interactive data
language (IDL) environment and uses the powerful and flexible
reduction package REDUCE (Piskunov & Valenti 2002), with
special adaptations to the TIGRE context; a detailed description
of TIGRE is given by Schmitt et al. (2014). For observations of
a binary system with an orbital period of more than 17 days a
robotic facility is clearly ideal. We observed the α CrB system
for more than 50 nights between December 2013 and June 2014;
the dates of our α CrB observations are listed in Table B.1.

2.1. Lines of the secondary component

The TIGRE spectrum of α CrB is dominated by the primary
component, but in some specific spectral ranges, lines of the sec-
ondary can be clearly recognized. One such case is plotted in
Fig. 1, where we show the coadded TIGRE spectrum of α CrB
in the wavelength range between 6090 Å and 6140 Å, with all
spectra superimposed using the wavelength shifts derived from
our RV-solution for the secondary component, which lead to a
corresponding smearing of all primary spectral lines (see dis-
cussion in Sect. 2.3). A corresponding (higher resolution) solar
spectrum taken from Delbouille et al. (1990) and Delbouille &
Roland (1995) is shown in Fig. 2. A comparison to Fig. 1 shows
that all the stronger lines appearing in the solar spectrum do have
their counterpart in the coadded TIGRE α CrB spectrum. This
specifically applies to the “triplet” of lines between 6102 Å and
6104 Å, which arise from Fe I and Ca I with a total equivalent
width of 308 mÅ (in the Sun), the Ca I line at 6122 Å with an
equivalent width of 222 mÅ and the line complex that is due to
Fe I between 6138 Å and 4140 Å with a total equivalent width
of 330 mÅ. Many weaker lines are also visible, however.

Figure 1 is somewhat deceptive since it represents the results
of more than 40 coadded spectra with individual exposure times
of typically 1200 s each, but to determine the wavelength shift
of each individual spectrum, only shorter integrations are avail-
able, and hence only the strong lines can and should be used
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Fig. 1. Coadded TIGRE spectrum of α CrB in the spectral region 6090–
6140 Å. The sharp lines are all due to the secondary component; cf.,
Fig. 2 and discussion in text.

Fig. 2. High-resolution solar spectrum in the spectral region 6090–
6140 Å taken from Delbouille et al. (1990) and Delbouille & Roland
(1995); see text for discussion.

for analysis. We therefore identified a few spectral ranges with
strong lines attributable to the secondary. These spectral ranges
comprise in particular a 5 Å wide region around 6103 Å con-
taining the Fe I lines at 6102.18 Å and 6103.19 Å as well as
the Ca I line at 6102.73 Å, a 3 Å wide region around 6122 Å
containing the Ca I line at 6122.22 Å, a 3 Å wide region around
6191 Å containing an Fe I and a Ni I line, a 3 Å wide region
around 6400 Å containing Fe I lines, a 3 Å wide region around
6421.4 Å containing again Fe I and Ni I lines, and a 3 Å wide
region around 6439 Å with Fe I lines.

2.2. Radial velocity curve: primary

To determine the radial velocity of the primary component we
considered the spectral region between 6330 Å and 6380 Å,
where two Si II lines are located at 6347.11 Å and 6371.37 Å.
This spectral range lies very close to the O2 absorption band
starting at 6275 Å, and numerous telluric lines are present in
this spectral region. We constructed a sample telluric absorp-
tion spectrum using the ESO molecfit package (Kausch et al.
2014) and examined the positions of the strongest lines in the
spectral region considered. The Si II lines were modeled as ro-
tationally broadened absorption lines with v sin(i) = 138 km s−1

Fig. 3. TIGRE spectrum of α CrB in the spectral range 6330–6380 Å
together with model fit; the sharp lines are telluric, the two broad lines
are produced by Si II; see text for details.

Fig. 4. Upper panel: TIGRE RV curve for the primary (asterisk) and
secondary (diamonds) of the α CrB system with model curves derived
from Eq. (A.1) with model parameters listed in Table 1. Lower panel:
O–C points for the primary (asterisk) and secondary (diamonds).

(Royer et al. 2002) and an instrumental Gaussian broadening
corresponding to a resolution of 20 100. The Si II lines were
allowed to have variable wavelength positions but had fixed
wavelength differences, while the stronger telluric absorption
lines were modeled as instrumentally broadened lines with fixed
wavelengths but individually variable amplitudes; the remain-
ing continuum variations were described by a sum of low-order
(Legendre) polynomials. We determined the best fit through a
χ2-statistics by varying the centroid position of the Si II lines
(but keeping their wavelength separation fixed). As an example
of this procedure, we show in Fig. 3 one of our α CrB spectra,
which shows the two Si II lines and quite a few telluric absorp-
tion lines; clearly, the telluric absorption lines provide a wave-
length grid against which the position of the Si II lines can be
well determined. The resulting radial velocity data are provided
in Table B.1 and are graphically shown in Fig. 4 together with a
model curve; the O–C values are shown in the lower panel.

2.3. Radial velocity curve: secondary

To determine the projected radial velocity of the secondary com-
ponent in each of our measured spectra, we used a template high-
resolution solar spectrum using the solar atlas by Delbouille
et al. (1990) and Delbouille & Roland (1995), extracted the
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Table 1. Fit results for the orbit parameters for the α CrB system from
the TIGRE RV curves for the primary component, the secondary com-
ponent, and both components together.

Parameter Comp A Comp B Comp A+B
ε 0.3768 0.3813 0.3794
error ±0.0029 ±0.0025 ±0.0019
K1 (km s−1) 36.19 36.22
error ±0.13 ±0.13
K2 (km s−1) 98.05 98.02
error ±0.33 ±0.33
ω (deg) 312.31 312.32 312.32
error 0.69 0.53 0.43
Tperi (JD) 56 646.081 56 646.082 56 646.082
error ±0.024 ±0.019 ±0.015
Mass ratio 0.3695
error 0.0018
a sin(i) (a.u.) 0.19379
error 0.00050
Mtot sin3(i) 3.429
error ±0.027

Notes. The quoted errors are derived from the second moments of the
respective MCMC chain.

appropriate regions in our α CrB spectra (cf. Sect. 2.1), and pro-
ceeded to calculate the cross correlation function between these
spectra. We identified the maximum of the measured cross cor-
relation function as the wavelength and hence velocity shift be-
tween the two spectra. Since the individual spectra of α CrB are
much noisier than the summed spectra shown in Fig. 1 and the
secondary lines are seen as rather weak lines on the continuum
of the A-type primary, the peaks of the cross correlation are well
below unity and some cross correlation functions show multiple
or not clearly defined peaks. We therefore rejected all spectra
where the cross correlation function did not exceed 0.4 and did
not show a clearly defined single maximum. The resulting RV
data are also provided in Table B.1, and in Fig. 4 we show the
resulting radial velocity curve together with a model curve; the
O–C values are shown in the lower panel.

2.4. System parameters from the RV curve

With our new RV data presented in Table B.1 we can determine
new system parameters using the RV curve in Eq. (A.1). Since
in contrast to Tomkin & Popper (1986) the RV data for both
components were taken at the same epoch, we carried out a si-
multaneous fit of both components using the same eccentricity,
the same time of periapsis passage, and arguments of periapsis
differing by exactly 180 degrees for the two components, while
we of course allowed for different K values and different veloc-
ity offsets for the two components to absorb errors in the wave-
length scale. We set up a Markov chain Monte Carlo (MCMC)
scheme, and after an initial burn-in considered chain lengths of
300 000 iterations with acceptance rates typically on the order
of 60%, from which we determined the mean and variance of
each parameter. We list them in Table 1 for the fits of the A com-
ponent, B component and the joint fit. For the joint fit we also
list the resulting mass ratios, the semi-major axis (multiplied by
sin(i)) and total mass (multiplied by sin3(i)) together with their
errors. It is reassuring that the parameters derived for the A and
B components separately and those derived from the joint fit are
consistent with each other. Our TIGRE data are new in the sense
that for the first time, they allow determining the argument of

Fig. 5. MCMC chain parameters (argument of periapsis and time of
periapsis passage; note that only every 100th point is plotted) for the
TIGRE data, showing the correlation between these parameters. The
solid contours contain 50%, 90%, and 99% of the data points.

the periapsis derived for both components with simultaneously
taken data.

We examined our MCMC results for correlations between
the fit parameters and found a very obvious correlation between
the derived times of periapsis passage and arguments of periap-
sis, which can be readily attributed to the second term in Eq. (2):
a higher value of the argument of the periapsis can be compen-
sated for by a lower value of the true anomaly, which is achieved
with an earlier periapsis passage. In Fig. 5 we show the results
of our MCMC result for the argument of the periapsis and the
derived time of periapsis passage together with the 50%, 90%,
and 99% error ellipses.

To be able to compare our results to the literature values, we
also carried out the same exercise for the RV data presented by
Tomkin & Popper (1986), the only difference being the treatment
of the times of periapsis passage, which were fitted separately
since these data were taken more than 30 years apart for the A
and B components (see Tomkin & Popper 1986, for details). To
facilitate the comparison, the results of this analysis are listed in
Table 2.

Our results are largely consistent with the literature results
presented by Tomkin & Popper (1986). In general, our errors are
smaller and we favor a slightly higher value for the system ec-
centricity. In addition, our values for the total mass are some-
what lower, and we favor a slightly more massive secondary
component. Unfortunately, the results for the argument of the
periapsis cannot be readily compared. The error for the argument
of periapsis is very large when only the A component is consid-
ered. When only the B component or both components are con-
sidered, our new values are higher, but not significantly so, thus
no conclusions on apsidal motion can be drawn from these data
(yet).

2.5. Rotational velocity: secondary

To our knowledge, no precise determinations of the rotation ve-
locity v sin(i) of the secondary have been published; Tomkin &
Popper (1986) quoted a value of v sin(i) ∼ 15 km s−1 without pro-
viding any further evidence for this value. To address the ques-
tion of the secondary’s rotation we specifically considered the
spectral range between 6000–6105 Å, where two strong Fe II
and Ca I lines are located in the solar spectrum (cf. Fig. 6).
Convolving this solar spectrum with various v sin(i) values and
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Table 2. Fit results for the orbit parameters for the α CrB system from
the data presented by Tomkin & Popper (1986) for the primary compo-
nent, the secondary component, and both components together.

Parameter Comp A Comp B Comp A+B
ε 0.3993 0.3706 0.3750
error ±0.0029 ±0.0035 ±0.0034
K1 (km s−1) 35.71 35.51
error ±0.35 ±0.36
K2 (km s−1) 99.01 99.28
error ±0.40 ±0.40
ω (deg) 313.85 311.62 311.95
error ±1.51 ±0.56 ±0.53
Tperi (JD) 36 994.656 44 997.531
error ±0.052 ±0.023
Mass ratio 0.3577
error ±0.0038
asin(i) (a.u.) 0.19495
error ±0.00073
Mtot sin3(i) (M�) 3.491
error ±0.039

Notes. The data for primary and secondary were taken at different
epochs. the quoted errors are derived from the second moments of the
respective MCMC result.

Fig. 6. Excerpt of high-resolution solar spectrum in the spectral range
6100–6106 Å taken from Delbouille et al. (1990) and Delbouille &
Roland (1995); see text for details.

the TIGRE instrumental resolution suggests rotation velocities
between 5–10 km s−1 (cf. Fig. 7), and we conclude that a more
reliable determination of the secondary’s rotational velocity re-
quires spectra with higher spectral resolution than TIGRE can
provide. At any rate, a rotational velocity of 5–10 km s−1 corre-
sponds to rotation periods of about 7–14 days (assuming aligned
orbit and secondary spin axes), which is consistent with the ob-
served X-ray activity of α CrB B (Schmitt & Kürster 1993).

3. Apsidal motion in α CrB

3.1. Expected effects in the α CrB system

Applying the apsidal motion formula given by Shakura (1985),
we can compute the expected values for the α CrB system as a
function of the misalignment angle between the rotation axis of
the primary and the orbit axis; for simplicity, we assume that the
rotation axes of primary and secondary are parallel, but we note
that – naturally – the primary accounts for by far the largest con-
tribution. As stellar structure constants we used the same values

Fig. 7. Coadded TIGRE spectra (solid histogram) together with the solar
spectrum (shown in Fig. 6) convolved with the TIGRE spectral resolu-
tion and v sin(i) values of 5 km s−1 (solid line), 10 km s−1 (long dashed
line), and 15 km s−1 (short dashed line).

Table 3. Derived values for periapsis passage Tperiapsis and error (in JD –
244 00 000.0), argument of periapsis ω and error (in degrees).

Data Year Tperiapsis (days) ω (degrees)
S2015 P 2014 56 646.036 ± 0.031 310.96 ± 0.88
S2015 S 2014 56 646.084 ± 0.017 312.33 ± 0.47
TP1986 S 79–84 44 251.070 ± 0.034 311.90 ± 0.83
E1976 P 59–61 36 803.688 ± 0.054 313.61 ± 1.50
McL1934 P 29–34 25 692.976 ± 0.121 301.37 ± 3.10
J1910 P 07–08 17 672.578 ± 0.118 312.06 ± 3.32
C1909 P 07–08 17 725.442 ± 0.284 312.92 ± 7.04

Notes. P refers to the primary component, S to the secondary
component.

References. S2015 refers to this paper, TP1986 to Tomkin & Popper
(1986), E1976 to Ebbighausen (1976), McL1934 to McLaughlin
(1934), J1910 to Jordan (1910), and C1909 to Cannon (1909).

as Schmitt (1998), that is, k2 = 0.0049 (note the typo in Table 3
in Schmitt 1998) for the primary and k2 = 0.021 for the sec-
ondary. The resulting curve of apsidal motion rate vs. misalign-
ment angle is shown in Fig. 8, which demonstrates that the ro-
tational contribution indeed dominates over the expected tidal
and relativistic contributions, and that a severe misalignment be-
tween the rotation and orbit axes could indeed lead to apsidal
motion values in apparent contradiction of general relativity and
even to retrograde apsidal motion.

3.2. Application to observations

All this very clearly shows that some apsidal motion is expected
to occur in the α CrB system. According to the theory sketched
in Appendix A.2, we expect a linear secular change of the argu-
ment of the periapsis through

ω(t) = ω̇(t − t0) + ω0, (1)

with ω̇ denoting the desired apsidal motion rate and ω0 the ar-
gument of the periapsis at some reference time t0. In this case
there are no closed orbits, and we need to define what is meant
by “period”. In particular, we need to distinguish between the
anomalistic period PA, that is, the time between two periapsis
passages, the average time P̂2π that is required for a full rev-
olution of 2π and Pp and Ps, and the time span between two
subsequent primary and secondary minima (cf. the discussion
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Fig. 8. Expected apsidal motion in the α CrB system; total effect
(solid line), rotational contribution (dashed line), relativistic contribu-
tion (dash-dotted line), and tidal contribution (dotted). The dash-dotted
lines denote the 68% and 90% uncertainty ranges for the derived apsidal
motion; see text for details.

in Appendix A.2). It is interesting to consider the difference
between the anomalistic period and the currently observed pe-
riod Pp between two primary minima. Evaluating Eq. (A.24)
with the nominal system parameters and assuming an apsidal
motion rate of 0.035 degrees/year, we find a difference of 10.8 s.
Since α CrB executes a little more than 21 revolutions in one
year, the system executed more than 2100 revolutions during the
more than 100 years of observations available to date. Thus the
cumulative difference between these two periods is expected to
be on the order of 20 000 s, or more than six hours ! At the same
time, the argument of the periapsis moved by less than 4 degrees,
which is difficult to detect given the quality especially of the old
data (cf. Sect. 3.2). At any rate, the values of the argument of the
periapsisω and the time of periapsis passage at the present epoch
cannot be independently chosen, they are instead linked by the
actual value of ω̇. For the following, we therefore consider the
values Pp at the current epoch and the eccentricity ε as known,
and together with the argument of the periapsis from Eq. (1), the
anomalistic period and in particular the times of periapsis pas-
sages are known. In the following we carry out two approaches
to determine the apsidal motion from RV data.

3.2.1. RV fitting

Our data consist of Q different samples, taken at different
epochs, each of which contains Nq observations, and we use the
indices (q, j) to refer to the data that consist of the observed ra-
dial velocities rvobs,q, j and their errors σq, j taken at times tq, j.
We specify our RV-model with the secular constants ε, the or-
bit eccentricity, and ω̇, the apsidal motion rate; further model
parameters are the period Pp, that is, the time between primary
minima, the time of periapsis passage T0, and the argument of
the periapsis at that time ω0. With these model parameters the
mean anomaly mq, j and true anomaly θq, j as well as the actual
argument of the periapsis ωq, j can be computed at all observed
times tq, j, and therefore the model RVs can be expressed as

rvmod,q, j = V0,q + K × (cos(θq, j + ωq, j) + ε cos(ωq, j)). (2)

In Eq. (2) we treat the velocities V0,q, q = 1...Q, as systemic
velocities, or in other words, as free parameters, which allow us
to absorb errors in the radial velocity scale of different data sets,
while the velocity amplitude K is a free model parameter that

must be the same for all observations. The model parameters are
determined by minimization of the χ2-statistics given by

χ2 =

Q∑
q=1

Nq∑
j=1

(V0,q + K × βq, j − rvobs,q, j)2

σ2
q, j

, (3)

where

βq, j = cos(θq, j + ωq, j) + ε cos(ωq, j). (4)

Clearly, the model is linear in the parameters K and V0,q, q =
1,Q, and minimization can be obtained through matrix inver-
sion. Since we consider ε and Pp as known, only the three pa-
rameters t0, ω0, and ω̇ remain.

3.2.2. Periapsis passage times

The RV data are often available not in a continuous fashion but
only at individual epochs. For these epochs the system parame-
ters can be obtained by fitting the data to the RV Eq. (A.1). Given
L measurements of periapsis passage Tperi,l, l = 1...L and their
respective errors σT,l, l = 1...L, we can determine the anomalis-
tic period PA through a minimization of the expression

χ2 =

L∑
l=1

(Tperi,l − PA × Nl − t0)2

σ2
T,l

, (5)

where Nl denotes the number of revolutions at periapsis passage
Tperi,l since some reference time t0. If next, for example, the time
span between primary minima is known (as is the case for α
CrB), the period difference PA−Pp can be calculated, and PA−Pp
also carries the desired information on apsidal motion through
Eq. (A.24).

3.3. Application to α CrB

We now proceed to apply the formalism of Sect. 3.2 to the
available RV data for α CrB. Clearly, any apsidal motion must
be identical for both components. We specifically used our
new TIGRE data (epoch 2014) and the RV data presented by
Tomkin & Popper (1986) (taken at epoch 1979–1984) for the
secondary component, and, for the primary component, again
our new TIGRE data (epoch 2014), those by Ebbighausen (1976)
(taken at epoch 1959–1961), those by McLaughlin (1934) (taken
at epoch 1929–1934) and finally those by Cannon (1909) and
Jordan (1910) (taken at epoch 1907–1908); it is obviously rare
to find systems with RV data available covering more than one
hundred years.

3.3.1. RV fitting

We now considered all available data sets simultaneously and al-
low ω̇ � 0. We assessed the goodness of fit with a χ2-criterion
using as error estimates the observed O–C distribution. We fur-
ther assumed that each data point carries the same weight, but we
also experimented with different weighing schemes and are con-
vinced that the final fit results do not depend sensitively on the
weights used. The best-fit value for ω̇ is 0.044 degrees/year. For
this fit we left the argument of the periapsis fixed at the present
epoch, but we again verified that the fit results do not depend
sensitively on the precise value of ω0. The resulting distribution
of the fit quality χ2 vs. ω̇ is shown in Fig. 9.
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Fig. 9. χ2 as a function of ω̇ for the available RV data of the α CrB sys-
tem; see text for details. The data clearly demand a non-zero value of ω̇.

Fig. 10. Probability distribution histogram for the derived bootstrapped
apsidal motion rate ω̇ (in degrees per year); for orientation the expected
level of apsidal motion for the case of complete aligned orbit and rota-
tion axes is also shown (cf. Fig. 8).

To better assess the errors on this value, we generated
30 000 bootstrap samples of the actual observations from the de-
rived error distribution and refitted the bootstrapped data for the
value of ω̇. The resulting probability histogram on ω̇ is shown in
Fig. 10 together with the 68% and 90% errors; our formal best
fits are ω̇ = 0.0445+0.0063

−0.0064 degrees/year (68% error interval) and
ω̇ = 0.0445+0.0097

−0.0098 degrees/year (90% error interval). We also
plot these values in Fig. 8 in comparison with the expected ef-
fects. As is clear from Fig. 8, the measurements lie outside the
68% but inside the 90% error intervals, slightly on the high side,
but we note that the expected apsidal motion rate depends on the
fifth power of the radius and measurement errors were not con-
sidered in the computation of the expected apsidal motion rate.
Therefore we conclude that expectations and observations are
consistent with each other, and we finally note that – as expected
– the value zero, that is, no apsidal motion, is certainly excluded
by the available measurements.

3.3.2. Periapsis passage times

We now examine the available data sets individually since each
of them covers only a limited amount of time where the effects
of apsidal motion should be very small indeed. In these fits we
therefore assumed ω̇ = 0, set the eccentricity and K values to

Fig. 11. Bootstrapped distribution (200 000 realizations) of the derived
period differences PA−Pp for the derived periapsis passage times listed
in Table 3. To better illustrate the influence of the older data, a histogram
with all data (solid line) and a histogram excluding the data taken before
1920 (dash-dotted line) was produced; see text for details.

the best-fit TIGRE values and fit for the values of ω and Tperi;
the results are listed in Table 3. An inspection of the relevant
literature shows good agreement between the published values
and our redetermined values. To estimate the errors, we gener-
ated 200 000 bootstrapped observations and carried out the cor-
responding fits.

We then proceeded to fit the derived periapsis passage times
using Eq. (5), derived an estimate for PA and computed PA−Pp,
using the value Pp = 17.359907 days (cf. Tomkin & Popper
1986). Again, to assess the robustness of the thus derived pe-
riod difference, we bootstrapped new measurements using the
estimated errors of the periapsis passage times quoted in Table 3
and thus produced the probability histogram shown in Fig. 11.
To assess the influence of the old data taken before 1920, we
considered all data (solid histogram) and only the data taken af-
ter 1920 (dash-dotted histogram). Considering all data, we find
a mean value of PA − Pp = 8.35+2.44

−2.43 s (68% error interval) and
PA − Pp = 8.35+4.02

−4.01 s (90% error interval), while excluding the
data taken before 1920 leads to PA −Pp = 5.43+2.85

−2.85 s (68% error
interval) and PA − Pp = 5.43+4.72

−4.71 s (90% error interval). Thus,
the anomalistic period and the period between primary minima
very clearly differ in the α CrB system.

4. Discussion and conclusions

As demonstrated by Figs. 9–11, apsidal motion is definitely
present in the α CrB system. The available measurements, taken
over the last 100 years, are consistent with theoretical expecta-
tions and, in particular, with a rotation axis of the primary more
or less orthogonal to the orbit plane. Such an alignment between
orbit and rotation axes in the α CrB system is also suggested by
measurements of the Rossiter-McLaughlin effect for the binary
component (S. Albrecht, in prep.).

Because of Eq. (A.19), these values imply a difference be-
tween orbital and anomalistic period of ΔP ≈ 5.9 s. With a
time lapse of 100 years or 2104 binary revolutions, this means
a difference of about 3◦ for the argument of the periapsis and
an advance of the time of periapsis passage of about 12 410 s
or 0.144 days. For our TIGRE data the accuracy of the determi-
nations of the periapsis values is about 0.02–0.05 days, and this
accuracy could be improved by further observations in the next
years. For the older data, the timing accuracy is – naturally – far
worse.
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With the derived values of the apsidal motion rate of 0.035 <
ω̇ < 0.054 degrees/year the apsidal motion period Paps must
be in the range 6600 yr < Paps < 10 600 yr, implying that the
presently available observations, taken over the past 100 years,
cover only a tiny fraction of the full apsidal motion cycle, and
therefore the changes in the other system parameters such as
the argument of the periapsis or the time between primary min-
ima ought to be very small indeed. Furthermore, converting
these values into the difference ΔP between the anomalistic pe-
riod and the actual period of primary minima, we find a range
10.5 s < ΔP < 16.5 s, which is marginally consistent with the
value of PA−Pp measured for the whole data set, but is true to a
lesser extent for the data excluding the data taken before 1920.
While all the error intervals do not formally overlap, they are
still close and indicate at least some degree of self-consistency;
clearly, more accurate measurements are in order.

As discussed in detail by Rudkjøbing (1959), apsidal motion
also leads to a different period between subsequent primary and
secondary minima. Applying Eq. (A.28) with the α CrB system
parameters and our derived apsidal motion values results in a
difference 7.2 s < ΔPsp = Ps − Pp < 11.6 s, while Schmitt
(1998) derived a value of ΔPsp = 4.8 ± 2.1 s, again outside the
formal 90% interval. It is difficult to assess the precise reasons
for this discrepancy, and further X-ray and optical observations
would certainly help to resolve this subject matter; for the mean
period P2π this difference is in the range 6.7 s < ΔP < 10.7 s.

Our apsidal motion measurements suggest a small
misalignment angle at best, and therefore the true equato-
rial rotation velocity veq of α CrB A should be close to the
observed v sin(i)-value of 138 km s−1, which allows us to
compute the constant ζ through Eq. (A.43) and the structure
constant log(k2) from Eq. (A.42), where we find a best value
of −2.42 and the range −2.35 < − log (k2) < −2.55. Here we
recall that Eq. (A.42) only holds in the absence of all tidal
effects. Inspecting the different terms in the apsidal moment
rate equation presented by Shakura (1985) (his Eq. (3)), we find
that the contributions of the secondary are indeed very small
(since the apsidal motion effects scale with the fifth power of
radius), while the tidal effects, that is, the tides produced by the
secondary on the shape of the primary, account for about 3% and
the GR effect for about 7% of the overall observed apsidal mo-
tion effect. Using then Eq. (3) in Shakura (1985), we determine
for the nominal case ω̇ = 0.46 degrees/year relativistic, tidal,
and rotational contributions of 10%, 3%, and 87%, respectively,
with log(k2) = −2.20. For the lower and upper bounds of
0.034 and 0.054 degrees/year we obtain relative contributions
of 14%, 3%, 83% and log(k2) = −2.33 and 9%, 3%, 88% and
log(k2) = −2.11, respectively, always assuming parallel rotation
and orbital axes. Claret & Gimenez (1991) quoted for a 2.51 M�
model log k2 = −2.27 at zero age and log k2 = −2.42 at an
age of 300 Myr; these values fit our measurements reasonably
well. Using the system data for α CrB as listed by Tomkin &
Popper (1986) and derived in this paper, that is, ε = 0.379,
R = 3.04 ± 0.3 R�, and P = 17.3599 days and the estimated
stellar structure constants log(k2), we can estimate the gravi-
tational moment J2 to lie in the range 0.0001 < J2 < 0.0002.
This means that despite α CrB A’s rapid rotation, its J2-value
is much lower than that of the also rapidly rotating giant
planet Jupiter (J2,Jupiter = 0.015) by almost two orders of
magnitude.

In summary, our apsidal motion data therefore suggest a
rather close alignment between orbit axis and the rotation axis
of the primary. The α CrB system is believed to be a mem-
ber of the Ursa Major moving group (a detailed discussion of

this moving group can be found in Soderblom & Mayor 1993).
While traditionally this group was believed to have an age of
300–400 Myr, more recent studies suggest an age close to that
of the Hyades (King et al. 2003), that is, around 600 Myr, in
which case the models of Claret & Gimenez (1991) yield a value
of log k2 = −2.67, which is somewhat smaller than observed.
On the other hand, if we use the observed radius and mass of
the A1 primary star and compare it with evolution tracks with
a well-tested amount of extended mixing (see Pols et al. 1997;
and Schröder et al. 1997 for details), we find an age of around
400 Myr, which is about two-thirds through the primary’s main-
sequence evolution. Our models would further indicate a slightly
smaller radius (of 0.8 R�) than the one derived by Tomkin &
Popper (1986), but this discrepancy may still lie within the ob-
servational uncertainties. At any rate, either estimate makes the
G-star secondary indeed very young compared to the Sun, nearly
a zero-age main-sequence star.

Zahn & Bouchet (1989) argued that for stars of the Hyades
age the limiting circularization period, that is, the longest pe-
riod for which circular orbits are observed, is between 8.5 and
11.9 days. Thus, the α CrB system, which is younger than
or approximately coeval with the Hyades, is not circularized
and synchronized, which follows from its period of 17.36 days.
Consequently, the observed alignment of orbit and rotation axes
suggests that the system was formed in this way, and it would be
very interesting to investigate the Rossiter-McLaughlin effect in
the secondary of the α CrB system. This view of the formation
history of the α CrB system is also supported by Herschel obser-
vations of the circumbinary disk around the α CrB binary system
by Kennedy et al. (2012), who argued that the observed copla-
narity of this disk with the binary orbit plane is of primordial
origin.
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Appendix A: Modeling apsidal motion

Traditionally, the problem of apsidal motion determination has
been approached from eclipse timing. Here we consider only ra-
dial velocity measurements, we therefore provide a somewhat
more extensive collection of the relevant formulae and physical
background for our approach; none of this material is really new,
however, it is scattered all over the literature, and we aim at pro-
viding a compact compilation for easy reference.

A.1. Keplerian orbits

For reference, we provide the essential textbook formulae for
our RV modeling as provided, for example, by Haswell (2010).
The radial velocity Vr of a body in an elliptic orbit around a
spherically symmetric central object is given by the expression

Vr = V0 + K(cos(θ + ω) + ε cosω), (A.1)

where K denotes the so-called velocity amplitude, θ the true
anomaly, ω the argument of the periapsis, and ε the eccentric-
ity as usual; V0 denotes a velocity of the system’s center of mass
w.r.t. the observer. The true anomaly θ is related to the eccentric
anomaly E through

tan
E
2
=

(
1 − ε
1 + ε

) 1
2

tan
(
θ

2

)
, (A.2)

and the eccentric anomaly is related to the mean anomaly M
through Kepler’s equation via

E − ε sin(E) = M. (A.3)

M is a measure of time t. If TPeri denotes the time of a given
periapsis passage and P̂2π the mean period of one revolution, that
is, the average time of the body to cover the angular distance of
2 π,

M(t) =
2π

P̂2π
· (t − TPeri), (A.4)

which means that M(t) denotes the angle since the reference pe-
riapsis passage. The velocity amplitude Kp of the primary can be
measured and is related to the other orbital elements through

Kp =
Msec

Mtot

2πa sin(i)

P̂2π

√
1 − e2

, (A.5)

where a and i denote semi-major axis and inclination and Msec
and Mtot secondary and total mass as usual; obviously, a similar
formula applies to the velocity amplitude Ks of the secondary.

A.2. Apsidal motion in the gravitional field
of a rotating body

The following material can be found in most textbooks on ce-
lestial mechanics, for example, Fitzpatrick (2012). For a spher-
ically symmetric gravitational field all orbital elements are con-
stant. However, if the central object is not spherically symmetric,
its external potential is not spherically symmetric either. In this
case, the total potential can be written as the sum of a spheri-
cally symmetric potential and another, smaller perturbing poten-
tial UP. To lowest order, this additional potential caused by the
deformation of the attracting body can be expressed in the form

UP = −GM
r

(
R2

r2

)
J2P2(sinφ), (A.6)

where R denotes the radius of the star and J2 its gravitational mo-
ment. P2 is the associated Legendre polynomial and all higher
multiple moments have been neglected; for a rapid rotator such
as the Earth this is an excellent approximation. Finally, the angle
φ denotes latitude w.r.t. the equatorial plane.

In the special case of an axisymmetric potential, which ap-
plies to a rotating star or a rotating planet, it can be shown that
the semi-major axis, the eccentricity, and inclination remain con-
stant, while the other orbital elements change with time. In par-
ticular, the resulting apsidal motion is directly related to J2, and
similar potentials occur in general relativity when particle orbits
in the Schwarzschildt geometry are considered (cf. for example
Hoyng 2006). Setting for simplicity φ = 0 in the following, it is
easy to show that the orbit motion still occurs in a plane and that
conservation of angular momentum applies through

r2θ̇ = h, (A.7)

where r and θ denote radial and angular coordinates, and h is a
constant of motion, given by

√
GMa(1 − ε2) in the unperturbed

Kepler problem (i.e., with J2 = 0). Introducing the inverse radial
variable u = 1

r and denoting derivatives w.r.t. to θ by ′, the non-
linear differential equation

u′′ + u = u0 + αu0u2, (A.8)

follows, where we have defined the constants

u0 =
GM
h2

(A.9)

and

α = (u0)2R2J2, (A.10)

which reduces for α = 0 to the well-known Kepler case with the
solution

u = u0(1 + ε cos θ). (A.11)

No closed solutions of Eq. (A.8) are known. However, if the
parameter α is small, we can insert the unperturbed solution
Eq. (A.11) in the nonlinear term on the right-hand side of
Eq. (A.8) and thus obtain a linear equation, which can be solved
with the expression

u = u0

(
1 + α

(
1 +

2ε2

3

)
+ ε(cos(θ) + αθ sin(θ)) − αε

2 cos2(θ)
3

)
·

(A.12)

Since α is small, we can write the latter equation in the form

u = u0

⎛⎜⎜⎜⎜⎜⎜⎝1 + α + ε cos(θ(1 − α)) +
αε2

(
1 + sin2(θ)

)
3

⎞⎟⎟⎟⎟⎟⎟⎠ + O
(
α2

)
,

(A.13)

which is correct to O(α). In Eq. (A.13), at the angle θ = 0 the
periapsis point is reached when

u(θ = 0) = u0

(
1 + α + ε +

αε2

3

)
+ O

(
α2

)
(A.14)

and the next periapsis passage occurs at the angle

θ1 =
2π

1 − α · (A.15)
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Thus the difference

Δθ = θ1 − 2π = 2πα + O
(
α2

)
(A.16)

denotes the apsidal motion between two consecutive periapsis
passages. For the anomalistic period PA, that is, the time elapsed
between two adjacent periapsis passages, we find

PA =

∫ 2π(1+α)

0

dθ
hu2

, (A.17)

where the expression for u(θ) from Eq. (A.13) needs to be in-
serted. For the average angular motion rate n between two peri-
apsis passages we find

n =
θ1

PA
=

2π
(1 − α)PA

=
2π

P̂2π
, (A.18)

where P̂2π denotes the previously introduced average time for
one revolution. With this definition we obtain

PA = P̂2π(1 + α), (A.19)

and the apsidal motion rate ω̇ becomes

ω̇ =
2πα
PA
= nα + O

(
α2

)
. (A.20)

However, the above-introduced period P̂2π is the time needed
for a full revolution, averaged over the full apsidal motion pe-
riod. We observes through eclipse measurements the instanta-
neous period Pp, tha tis, the time between two primary minima.
In this case, the apsidal motion per revolution is given by ω̇×P2π
and, following Rudkjøbing (1959), the area of the relative orbit
ellipse between two primary minima that is corotating with an-
gular speed ω̇ is given by

Arel = πa2
√

1 − ε2

⎛⎜⎜⎜⎜⎜⎝1 − r2
p

a2
√

1 − ε2

ω̇Pp

2π

⎞⎟⎟⎟⎟⎟⎠ , (A.21)

where rp is the radial distance from the focal point at the time
of primary minimum. We treat the second term in Eq. (A.21)
as small and consequently ignore (in this first-order term) the
differences between the various periods and replace Pp by PA. At
the time of primary minimum the following condition between
the argument of periapsis ω and the true anomaly θ holds:

ω + θ =
π

2
, (A.22)

and therefore rp can be expressed as

rp =
a(1 − ε2)

1 + ε sin(ω)
· (A.23)

Because of Kepler’s second law, areas are proportional to time,
and therefore we have

Pp

PA
= 1 − (1 − ε2)3/2

(1 + ε sin (ω))2

ω̇PA

2π
, (A.24)

where again – in first order – the precise period in the denomina-
tor on the left-hand side is immaterial. Equation (A.24) demon-
strates that the actual period Pp between minima changes with
the course of apsidal motion. It requires some integration to ver-
ify that averaging Eq. (A.24) over one apsidal period results in
the expression

P̂2π = PA(1 − ω̇PA), (A.25)

where P̂2π is the average time needed for a revolution of 2 π.

A.3. Eclipse timings

For the case of an eclipsing binary system with substantial ec-
centricity such as α CrB the time periods between primary and
secondary eclipses usually differ. For the time Pp between two
consecutive primary minima, Rudkjøbing (1959) derived the
expression

Pp = PA ×
(
1 − (1 − ε2)3/2

(1 + ε sinω)2

)
ω̇P2π

2π
· (A.26)

Equation (A.26) shows that the actual period Pp changes
periodically, while when averaged over the periapsis period, we
obtain

P̂2π = PA ×
(
1 − ω̇P2π

2π

)
= PA × (1 − α), (A.27)

showing that on average Pp equals the period of one revolution.
The same applies to the average period between two consecutive
secondary minima, leading to the expression

Pp − Ps

P
= (1 − ε2)

3
2

4ε sin(ω)

(1 − ε2 sin2(ω))2

ω̇P
2π

, (A.28)

as derived by Rudkjøbing (1959).

A.4. Comparison with orbital perturbation theory

The results of perturbation theory can of course also be ap-
plied to the current problem. The case of a rotating body is par-
ticularly relevant to determine the orbits of artificial satellites
around Earth. Blitzer (1970) considered the motion in general
axisymmetric fields and derived the variations of the osculat-
ing elements as a function of the so-called zonal coefficients.
The contribution of J2 is dominant, and he derived the following
equations (in lowest order of J2) for the change in the argument
of the periapsis, the nodal regression, and the change in mean
motion:

ω̇ =
3nJ2

4p2
(4 − 5 sin2(i)), (A.29)

Ω̇ = −3n cos(i)J2

2p2
, (A.30)

Ṁ = n +
3nJ2

4p2
(2 − 3 sin2(i))(1 − ε2)(1/2), (A.31)

where p is the ellipse’s focal parameter scaled by the radius

p2 =
a2

R2
(1 − ε2)2 (A.32)

and

n2a6 = GM. (A.33)

In Appendix A.4 the angle i denotes the angle of the orbit plane
w.r.t. to the equatorial plane. We recognize that for i = 0◦ the set
of Eqs. (A.29) reduce to Eq. (A.20), and we recover our previous
result. At the same time, Eqs. (A.29) contain the generalization
to arbitrary values of i. We note in this context that nodal re-
gression is irrelevant in our context since the radial velocity is
independent of the value of Ω.
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A.5. Relation of gravitational moments to stellar structure
constants

Planetary work usually refers to gravitational moments, while
stellar work normally refers to the so-called stellar structure con-
stants. Hejlesen (1987) specifically defined the internal structure
constant k2 through the expression

k2 =
3 − η0

4 + 2η0
, (A.34)

where the values η0 are the solutions of Radau’s differential
equation for the function η(x)

x
dη
dx
+ 6

ρ(x)
ρ̄(x)

(η + 1) + η(η − 1) = 3. (A.35)

Here x is a radial variable from the star’s center to the surface, ρ
the density, and ρ̄(x) the mean density within some radius x, that
is, the mean density inside x. At the center of the star we have
η = 0, and therefore the run of density with radius determines
the value of η at the surface. The trivial inversion of Eq. (A.34)
yields

η0 =
3 − 4k2

1 + 2k2
, (A.36)

and thus this information is contained in the coefficients k2. Cook
(1980) showed that Radau’s equation can be written in the form

d
dx

(ρ̄(x)x5
√

1 + η) = 5ρ̄(x)x4ψ(η), (A.37)

with the function ψ(η) defined through

ψ(η) =
1 + η/2 − η2/10√

1 + η
· (A.38)

Since for the usually encountered values of η the function ψ de-
viates only slightly from unity, we approximate ψ(η) ∼ 1, and
Radau’s equation in its reduced form reads

d
dx

(
ρ̄(x)x5

√
1 + η

)
= 5ρ̄(x)x4. (A.39)

Cook (1980) showed that the importance of Eq. (A.39) results
from the fact that it is closely related to the moment of inertia
around the rotation axis, denoted by C, and computed

C

MR2
0

=
2
3

(
1 − 2

5

√
1 + η0

)
, (A.40)

where M denotes the total mass. Through McCullagh’s theorem
the difference between the principal moments of inertia is related
to J2 through

J2 =
C − A

Ma2
0

, (A.41)

where A denotes the moment of inertia for an axis orthogonal to
the rotation axis. Cook (1980) demonstrated that

J2

ζ
=

3 − η0

6 + 3η0
, (A.42)

where ζ is the ratio between centrifugal and gravitational accel-
eration at the equator:

ζ =
4π2R3

P2
rotGM

=
Rv2

eq

GM
· (A.43)

The internal structure constant k2 is directly related to J2, which
in turn is responsible for all secular variations in periapsis, nodal
regression, and mean motion. In our treatment we only consid-
ered the rotational deformation of the primary, but ignored all
tidal effects and general relativistic effects; the secondary was
treated as a point-like source. Assuming rotation axis and orbit
normal parallel and an orbit inclination of exactly 90◦, the apsi-
dal motion formula derived by Shakura (1985) (again his Eq. (3))
reduces to

ω̇ =
2πP2π

(1 − ε2)2P2
rot

kISC
R5

a5

(
1 +

M2

M1

)
, (A.44)

where kISC denotes the internal structure coefficient (of the pri-
mary), Prot its rotation period, and M2/M1 the mass ratio. Using
Kepler’s third law and the expressions Eqs. (A.10) and (A.20),
we find the desired relation between J2 and the so-called internal
structure constant kISC through

3 × J2 = ζ × kISC, (A.45)

and we repeat that this relation only holds in the absence of all
tidal effects for a point-like secondary.

A104, page 12 of 13



J. H. M. M. Schmitt et al.: Apsidal motion

Appendix B: Additional table

Table B.1. TIGRE RV measurements of the α CrB binary system.

JD RV (A) O–C RV (B) O–C
(days) (km s−1) (km s−1) (km s−1) (km s−1)
6644.0117 42.66 0.83
6645.0078 −12.52 −2.21
6646.0117 29.75 0.92 −84.12 0.81
6647.0078 42.20 0.01 −122.56 −1.21
6662.0000 −7.83 −0.84 11.94 −0.91
6662.9727 18.44 0.27 −56.32 −0.61
6666.9805 −60.92 −2.85
6667.9492 −33.69 −1.48
6676.0000 76.31 2.06
6676.9297 75.90 2.70
6678.9258 −13.44 1.48 32.74 −1.50
6679.9219 5.47 −1.18
6680.9297 31.75 −1.54 −96.59 0.58
6681.9375 41.73 −0.45 −122.39 −1.16
6682.9219 36.21 1.33 −98.48 2.51
6683.9922 22.57 −0.30 −69.91 −1.61
6684.9375 12.67 −0.35 −42.23 −0.57
6685.9648 2.55 −1.28 −16.08 0.84
6689.9258 −19.98 0.32
6690.9688 −24.26 0.21 57.84 −1.33
6692.0078 −27.28 0.41 68.62 0.72
6700.9219 28.20 0.49
6701.9727 17.58 1.32
6702.9766 −23.75 1.07
6703.9883 −2.22 −0.90
6706.9805 −18.46 0.46
6707.9492 −23.22 −0.17 54.12 −1.23
6708.9727 −27.21 −0.62
6709.9648 −29.01 0.02 71.01 −0.55
6713.8984 −10.74 −0.16 24.46 1.90
6714.9492 15.79 0.54
6715.9648 38.70 0.07
6716.9688 40.31 −0.56 −116.13 1.37
6717.9453 30.42 −1.12
6762.8711 −29.41 0.64 71.68 −2.69
6778.8242 67.09 −0.93
6782.8203 −19.52 −0.85 46.63 2.32
6783.8164 1.20 1.41 −4.50 1.02
6787.8164 27.07 0.43 −77.98 0.53
6790.7461 −2.34 1.55
6793.7773 −18.81 0.10 46.51 2.29
6794.7812 −23.05 0.13 53.32 −2.37
6809.7539 −11.81 −0.05 27.61 2.61
6810.7578 −16.79 0.31
6816.7148 −27.30 −1.11 61.85 −2.50
6820.6953 42.92 0.63

Notes. Dates are given in heliocentric Julian dates (2 450 000 is sub-
tracted, Col. 1), the derived radial velocities and errors for the primary
(Cols. 2 and 3) and secondary (Cols. 4 and 5) im km s−1.

A104, page 13 of 13


	Introduction
	Observations and data analysis
	Lines of the secondary component
	Radial velocity curve: primary
	Radial velocity curve: secondary
	System parameters from the RV curve
	Rotational velocity: secondary

	Apsidal motion in  CrB
	Expected effects in the  CrB system
	Application to observations
	RV fitting
	Periapsis passage times

	Application to  CrB
	RV fitting
	Periapsis passage times


	Discussion and conclusions
	References
	Modeling apsidal motion
	Keplerian orbits
	Apsidal motion in the gravitional fieldof a rotating body
	Eclipse timings
	Comparison with orbital perturbation theory
	Relation of gravitational moments to stellar structure constants

	Additional table

