

Simon Driver (RSAA)

David Lemon, Jochen Liske (St Andrews) Nicholas Cross (JHU) [Rogier Windhorst, Steve Odewahn, Seth Cohen (ASU)]

The Millennium Galaxy Catalogue - The MGC

- A High Precision Nearby Galaxy Catalogue A Roll-Royce Survey
 - Observation, Reduction, Calibration (Photometric and Astrometric), Image Detection, Image Extraction, Contamination, Classification & Completeness
- Preliminary Science Results:
 - Star-counts and the Galactic Halo
 - Calibration of 2dFGRS and SDSS-EDR
 - Missing Local Galaxy Populations ?
 - Precision Galaxy Counts 16 < B < 24
 - Solving the Normalisation Problem
 - Measuring/Constraining the Local Luminosity Function
 - The Local Luminosity Density
 - The fraction of baryons in galaxies
- Future work and the bigger picture:
 - The MGC-BRIGHT morphology and redshift campaign
 - Pushing beyond the nearby universe: HST BBPAR and GOODS surveys

The Millennium Galaxy Catalogue

- A deep wide survey (36 sq deg, to μim=26 mags/sq arcsec, B~24 mags)
- The Isaac Newton Telescope (2.5m) Wide Field Camera

Comparison to other Imaging

The WFC Footprint

- 144 overlapping pointings along zero dec (10h00m-14h50min)
- 576 individual 2048x4100 CCD images
- 0.33" pixels, seeing FWHM ~ 1.3", single 750 sec exposures
- B-band only (u,g,r,i,z from SDSS-EDR)
- RedshFIRSTE THREEBOINTINGSGR8 and

Calibration (Photometry and

Astrometry)

- Every 10th field calibrated to Landolt Standards
- Data reduced via Cambridge WFSU pipeline
- Final astrometry calibrated to APM (Tycho-2)
- Final photometry via bootstrapping between

Image Detection and Analysis

• Analysis Issues:

- Photometric Accuracy/Conditions
- Background variations/light gradients
- Bright stars
- Object detection/deblending
- Isophotal v total magnitudes
- Star-galaxy separation
- Completeness and Selection Biases

20

m=16th mag

Image Extraction

Source Extractor:

- Objects identified from > 9 connect pixels above limiting isophote
- Constant limiting isophote of 26 mags/sq/arcsec
- Isophotal, Isophotally corrected and Kron magnitudes recorded
- Extinction correction via Schlegel maps
- Initial star-galaxy separation via inbuilt Artifical Neural Network
 - Stars/galaxies well defined upto B=20 mags
- Overlap regions eliminated

Initial first pass catalogues:

- ~1.38 million objects detected to B=24 mags: MGC-FAINT
- ~68,747 to B=20 mags (resolveable): MGC-BRIGHT
 - 56,294 stars
 - 12,453 galaxies

Star-galaxy separation

Viable to $B \sim 21$ mags, For B > 21 mags use statistical method

- All objects with B < 20 mag, stellaricity < 0.97 eyeballed !
- All objects with size < FWHM eyeballed !
- Object breakdown:
 - 51,213 Stars
 - 11,808 Galaxies
 - 140 Erroneous deblends
 - 148 Asteroids
 - 162 Satellittes
 - 263 Diffraction spikes
 - 113 Extended cosmic rays
 - 3,027 Defects (hot pixels, bad columns)
 - 2,061 Noise detections
- 9.9 % contamination of stars !
- 5.6% contamination of galaxies !

Bright stars, satellitte trails, dad columns, hot pixels, boundaries,

The Final Product: MGC-BRIGHT

Original Eyeballed

Final

Area Covered 30.90 sq deg	37.5 sq deg	37.5 sq deg
No of Stars 41,235	56,294	51,213
No of Galaxies 9,837	12,453	11,808
No gals/sq deg 318	332	315

~10% contamination in automated galaxy catalogues
Implications for APM and SDSS imaging catalogues.

Final catalogues: 16th mag

Final catalogues: 17th mag

Final catalogues: 18th mag

Final catalogues: 19th mag

Final catalogues: 20th mag

(11-2) magaza

Final catalogues: 20th mag

(11-22magalag2)

Final catalogues: 20th mag

(u-2)/maga(aa)

Preliminary MGC-BRIGHT Science:

- Star-counts and the Galactic Halo
- Photometric Accuracy and Completeness of 2dFGRS and SDSS-EDR
- Missing Local Galaxy Populations or not ?
- Precision Galaxy Counts 16 < B < 24
 - Solving the Normalisation Problem
 - Measuring/Constraining the Local Luminosity Function
 - The Local Luminosity Density
 - The fraction of baryons in galaxies
- Morphologies via ANN and Structural Analaysis via GIM2D
 - Morphological counts
 - Morphological Luminosity Functions

Star and galaxy distributions

The Axial ratio of the Galactic Halo

Used Gilmore starcount model:

- Thin disk population (exponential scale length, height = 3.5kpc, 250pc)
- Thick disk population (exponential scale length, height = 3.5kpc, 1300pc)
- Spheriod population (de Vauc', effective radius= 2.67kpc, axis ratio=?)

Photometric Accuracy of 2dFGRS

v magnitude

v surface brightness !

Completeness of the 2dFGRS ~ 93%

Examples of missing 2dFGRS

Photometric Accuracy of SDSS-EDR

v magnitude

v surface brightness

Examples of missing SDSS-EDR

The MGC-BRIGHT Completeness

Missing galaxies

 Speculation of a missing population of Low Surface Brightness galaxies ruled out as no new population discovered

•

The Galaxy Number Count Plot

Modeling the Galaxy Counts

- A prediction of the galaxy number counts depends upon:
 - The Cosmological Model ($\Omega_{M}, \Omega_{\Lambda}$)
 - The Matter Density
 - The Cosmological Constant
 - The Evolution of the $L \propto L_{\rho}(1+z)^{\beta}$ Population (β , γ)
 - Luminosity Evoluti $\frac{N \propto N_o (1+z)^{\gamma}}{2}$
 - Number Evolution:
 - The Space Density of Galaxies Locally (M*, α , ϕ *)
 - The Characteristic Luminosity
 - The Faint-end slope
 - $\varphi(M) = -0.9 \ln 2.5 \varphi(*) 10^{-0.4(M-M^*)(\alpha-1)} e^{-10^{-0.4(M-M^*)}} dM$
 - [The K-correction (K(z))]

7 parameters per evolutionary track (morphological type ?)

BUT WHICH LF ???

0.5,0.0

Which Luminosity Function ?

NUMBER OF GALAXIES /Mpc^3

Models v Observations

• The Normalisation Problem : 3 possible solutions

- Substantial Nearby Large Scale Structure
- Calibration errors
- Incompleteness/Missing Galaxies

The Faint Blue Galaxy Problem : 3 possible solutions

- Wrong Cosmology => Cosmological Constant
- Underestimated Evolution of the Galaxy Population
 - Low z formation
 - Delayed formation of a sub-class
- Incomplete estimate of the nearby dwarf galaxy population

The Normalisation Problem is the more fundamental !
 Require Nearby Precision Galaxy Counts

The Final MGC Galaxy Counts

Large Scale Structure Correction for

- MGC area = 31 sq d
- Susceptible to LSS
- Can map to 2dFGR
- Increases effective to 1841 sq deg !
- Assumes NGP and are not offset

Derive local LF from counts alone ?

Use curvature of the galaxy counts to - constrain the LF without a single z !

Constraint weak but consistent with z surveys -

Now fix M* and constrain α

$\alpha = -1.19 + / -0.08$

Important confirmation of α , as methodology is independent of the z incompleteness.

The generic local luminosity function

 $\frac{MGC}{\phi^*=0.0159/Mpc^{3}} \frac{\alpha=-1.19}{(h=1)}$

Errors in published LFs $\phi(*)$'s (wrt MGC-**BRIGHT+2dFGRS LSS corr)** 2dFGRS Incompleteness +1% -Correction SDSS +51% -**Artifacts/Clustering Zwicky magnitudes ?** SSRS2 +13% -Durham/UKST +6% -??? **ESP** +21% -??? -32% - APM Calibration **MSO/APM** Afib Combined -5% datasets ?

The Local Luminosity Density

- The Luminosity Density is give $j = L(*)\phi(*)\Gamma(\alpha + 2)$
- SURVEY OLD j (x10^8L_o/Mpc^3) REVISED j • **2dFGRS** 1.90 1.77 **SDSS** 2.72 1.79 1.49 SSRS2 1.69 **UKST** 1.77 1.67 **ESP** 1.80 2.18 APM 1.14 1.67 Afib 1.74 1.82 CS 1.83 1.71 NOG 1.78 1.70 RANGE 1.14 - 2.72 1.67 - 1.80

The Fraction of Baryons in Galaxies

- Luminosity density is derived from the local LF:
- The LD is related to the matter-densit

$$\Omega_{M,gals} = \left(\frac{M}{L}\right)j$$

- Adopting a mean baryon mass-to-light ratio for galaxies =>
- From Big Bang Nucleosynthesis.
- Fraction of borycone in galaxies: $f_b \left(\frac{gals}{total} \right) = (3.30 + /-0.05) \left(\frac{M_b}{L} \right) \% < 16.50\%$
- So where are the baryons ?

The longer term plan: Galaxy Morphology

- The MGC is one component that will lead to constraints on:
 - morphological evolution of galaxies via extraction of volume limited samples
 - galaxy luminosity/merger evolution from galaxy counts and N(z)s
 - <u>A</u>, by isolating the elliptical galaxies for which the uncertainties are less
- The power and scope of combined surveys:
 - Precision morphological galaxy counts from 16 < B < 28 mags
 - 16 < B < 20 MGC-BRIGHT
 - 20 < B < 28 Hubble Space Telescope (BBPAR/GOODS)
 - Plus the redshift distributions
 - 16 < B < 20 2dFGRS+SDSS+missing via AAT (~7300 so far 2500 to get).
 - 21 < B < 24 BBPAR redshifts via GEMINI
 - 21 < B < 26 Photometric redshifts for GOODS

The power of combined datasets

The MGC-BRIGHT z campaign

M>-19. Volume limited samples: z=0.03 M<-17.5

M>-17. Volume limited samples: z=0.03 M<-16

The Hubble Tuning Fork

Normal spirals

The Hubble Tuning Fork Breakdown

 Numerous new galaxy types have been found which do not fit on the original Hubble tuning fork diagram

Other issues

- Subjective
- No physical basis
- Shoe-horning required

The BBD: A new methodology

- Surface brightness versus magnitude
 - Quantitative
 - Physical basis ? (SB -> ang. Mom., mag -> mass)-

- Isolate Elliptical galaxies:
 - High surface brightness objects = easy to find and measure magnitudes for
 - Simple systems relative to spirals and irregulars = easy to classify
 - Old systems with low star-formation rates = minimal evolution
- 7 parameter model to predict N(m) and N(z) distribution Can be measured locally from MGC-BRIGHT
 - M*
 - $-\alpha$
 - $\phi(*)$

Adopt parameters from latest simulations

- E(z)
- K(z)

 $-\Omega_{M}$

Solve via 2-parameter χ^2 minimisation

Elliptical Galaxy Counts

Uncertainties in Elliptical Number count models

Current constraints from N(m) alone 1 0.8 0.6 Ω_{Λ} 0.4

Incorporating the uncertainties

Need N(z) distributions to be viable:

• N(z)s help to break the evolution-Lambda degeneracy

MGC Summary

- MGC-BRIGHT = A Rolls-Royce local catalogue of ~10,000 galaxies
- z's for 7,000 galaxies to date (thanks to 2dFGRS+SDSS-EDR)
- u, B, g, r, i, z photometry (thanks to SDSS-EDR)
- Preliminary Results:
 - Galactic Halo axis ratio (c/a)=0.60+/-0.05 (errors to improve)
 - No missing population of giant low surface brightness galaxies
 - No missing population of giant compact objects
 - 2dFGRS suffers ~8% incompleteness in the imaging survey
 - The 2dFGRS photometry is OK (~ +/- 0.2), but strong surface brightness bias
 - SDSS-EDR may suffer from a 10% contamination by artifacts
 - SDSS-EDR photometry is good (~+/- 0.1) with no surface brightness bias
 - The 2dFGRS LF provides the most reliable LF

- The MGC-BRIGHT is re-calibrating our insight into the local universe
- Interpretation of faint galaxy counts and N(z)s is fundamentally flawed until local information is refined
- Morphology represents a new research avenue
- Elliptical counts could constrain Lambda, if other errors are minimal
- Lambda-evolution degeneracy broken via redshifts
 distributions
- With a revised local sample and N(z)s for HST samples we can:
 - Simultaneously solve for Cosmology and Evolution
 - Determine the rate and level of the evolution of other types (spirals and irregulars)
- a la reality expect complexy to be constrained via CMP

