

David Lemon, Jochen Liske (St Andrews)
Nicholas Cross (JHU)
[Rogier Windhorst, Steve Odewahn, Seth Cohen (ASU)]

Overview

- The Millennium Galaxy Catalogue - The MGC
- A High Precision Nearby Galaxy Catalogue - A Roll-Royce Survey
- Observation, Reduction, Calibration (Photometric and Astrometric), Image Detection, Image Extraction, Contamination, Classification \& Completeness
- Preliminary Science Results:
- Star-counts and the Galactic Halo
- Calibration of 2dFGRS and SDSS-EDR
- Missing Local Galaxy Populations ?
- Precision Galaxy Counts 16 < B < 24
- Solving the Normalisation Problem
- Measuring/Constraining the Local Luminosity Function
- The Local Luminosity Density
- The fraction of baryons in galaxies
- Future work and the bigger picture:
- The MGC-BRIGHT morphology and redshift campaign
- Pushing beyond the nearby universe: HST BBPAR and GOODS surveys

The Millennium Galaxy Catalogue

- A deep wide survey (36 sq deg, to $\mu_{\text {im }}=26$ mags/sq arcsec, B~24 mags)
- The Isaac Newton Telescope $(2.5 \mathrm{~m})$ Wide Field Camera

Comparison to other Imaquing

Surveys

The WFC Footprint

- 144 overlapping pointings along zero dec (10 h 00 m 14 h 50 min)
- 576 individual 2048×4100 CCD images
- $0.33^{\prime \prime}$ pixels, seeing FWHM ~ $1.3^{\prime \prime}$, single 750 sec exposures
B-band-only ($\mathrm{u}, \mathrm{G}, \mathrm{r}, \mathrm{r}, \mathrm{i}$, z from-SDSS-EDR $\left.^{2}\right)$ RedshFIRSE THREE: BOINTINGSGRO an

Data Quality

Calibration (Photometry and Astrometry)

- Every 10 th field calibrated to Landolt Standards
- Data reduced via Cambridge WFSU pipeline
- Final astrometry calibrated to APM (Tycho-2)
- Final photometry via bootstrapping between

Image Detection and Analysis

- Analysis Issues:
- Photometric Accuracy/Conditions
- Background variations/light gradients
- Bright stars
- Object detection/deblending
- Isophotal v total magnitudes
- Star-galaxy separation
- Completeness and Selection Biases
$\mathrm{m}=16$ th mag

Image Extraction

- Source Extractor:
- Objects identified from > 9 connect pixels above limiting isophote
- Constant limiting isophote of 26 mags/sq/arcsec
- Isophotal, Isophotally corrected and Kron magnitudes recorded
- Extinction correction via Schlegel maps
- Initial star-galaxy separation via inbuilt Artifical Neural Network
- Stars/galaxies well defined upto B=20 mags
- Overlap regions eliminated
- Initial first pass catalogues:
- ~ 1.38 million objects detected to $\mathrm{B}=24$ mags: MGC-FAINT
- ~68,747 to B=20 mags (resolveable): MGC-BRIGHT
- 56,294 stars
- 12,453 galaxies

Star-galaxy separation

Viable to B ~ 21 mags,
For B > 21 mags use statistical method

Eyeballing

- All objects with $\mathrm{B}<20$ mag, stellaricity <0.97 eyeballed!
- All objects with size < FWHM eyeballed !
- Object breakdown:
- 51,213 Stars
- 11,808 Galaxies
- 140 Erroneous deblends
- 148 Asteroids
- 162 Satellittes
- 263 Diffraction spikes
- 113 Extended cosmic rays
- 3,027 Defects (hot pixels, bad columns)
- 2,061 Noise detections
- 9.9% contamination of stars !
- 5 6\% contamination of oalaxies I

Maskincla

Bright stars, satellitte trails, dad columns, hot pixels, boundaries,

The Final Product: MGC-BRIGHT

Original Eyeballed

Final

Area Covered
30.90 sq deg
No of Stars

56,294	51,213
12,453	11,808
332	315

- $\sim 10 \%$ contamination in automated galaxy catalogues
- Implications for APM and SDSS imaging catalogues.

Final cataloques: 16th mag

Final cataloques: 17th mag

Final cataloques: 18th mag

Final cataloques: 19th mag

Final catalogues: 20th mag

Final catalogues: 20th mag

(H-ค2mancalam)

Final catalogues: 20th mag

Preliminary MGC-BRIGHT Science:

- Star-counts and the Galactic Halo
- Photometric Accuracy and Completeness of 2dFGRS and SDSS-EDR
- Missing Local Galaxy Populations or not?
- Precision Galaxy Counts $16<B<24$
- Solving the Normalisation Problem
- Measuring/Constraining the Local Luminosity Function
- The Local Luminosity Density
- The fraction of baryons in galaxies
- Morphologies via ANN and Structural Analaysis via GIM2D
- Morphological counts
- Morpholoaical Luminosity Functions

Star and claldaxy distributions

The Axial ratio of the Galactic Halo

- Used Gilmore starcount model:
- Thin disk population (exponential scale length, height $=3.5 \mathrm{kpc}$, 250pc)
- Thick disk population (exponential scale length, height $=3.5 \mathrm{kpc}$, 1300pc)
- Spheriod population (de Vauc', effective radius= 2.67 kpc , axis ratio=?)
- Sola
- Chin2

Photometric Accuracy of 2dFGRS

v magnitude

v surface brightness !

Completeness of the 2dFGRS ~ 93\%

Examples of missing-2d|FGRS

Photometric Accuracy of SDSS-EDR

v magnitude

v surface brightness

Completeness of the SDSS-EDR $\sim 99 \%$

Examples of missing SDSS-EDR

The MGC-BRIGHTT Completeness

Missing galaxies

- Speculation of a missing population of Low Surface Brightness galaxies ruled out as no new population discovered
- Giant LS HIPASS)

The Galaxy Number Count Plot

MANY

FEW

GOOD
(CCD)

BAD (PHOTO)

Modeling the Galaxy Counts

- A prediction of the galaxy number counts depends upon: 0.3,0.7
- The Cosmological Model $\left(\Omega_{\mathrm{M}}, \widehat{\Omega_{\wedge}}\right)$
- The Matter Density
- The Cosmological Constant

$$
0.5,0,0
$$

- The Evolution of the $L_{\infty \propto L_{0}(1+z)^{s}}$ Population (β, γ)
- Luminosity Evoluti ${ }^{N \propto N_{o}(1+z)^{\gamma}}$
- Number Evolution:
- The Space Density of Galaxies Locally ($M *, \alpha, \phi$)
- The Characteristic Luminosity

BUT WHICH LF???

- The Faint-end slope
- $\varphi(M)=-0.9 \ln 2.5 \varphi\left(^{*}\right) 10^{-0.4\left(M-M^{*}\right)(\alpha-1)} e^{-10^{-0.4\left(M-M^{*}\right)}} d M$
- [The K-correction $(\mathrm{K}(\mathrm{z}))$]
- 7 parameters per evolutionary track (morphological type ?)

Which Luminosity Function?

EvodW/ SHIXVTVD HO \&EgWกN

Models v Observations

Problems

- The Normalisation Problem : 3 possible solutions
- Substantial Nearby Large Scale Structure
- Calibration errors
- Incompleteness/Missing Galaxies
- The Faint Blue Galaxy Problem: 3 possible solutions
- Wrong Cosmology => Cosmological Constant
- Underestimated Evolution of the Galaxy Population
- Low z formation
- Delayed formation of a sub-class
- Incomplete estimate of the nearby dwarf galaxy population
- The Normalisation Problem is the more fundamental ! Require Nearby Precision Galaxy Counts

The Final MGC Galaxy Counts

Large Scale Structure Correction for

MGC

- MGC area $=31$ sq dan
- Susceptible to LSS
- Can map to 2dFGR
- Increases effective to 1841 sq deg !
- Assumes NGP and are not offset

Constraining the local LFS

Derive local LF from counts alone?

Use curvature of the
galaxy counts to constrain the LF without a single $\frac{\pi}{4}$!

Constraint weak but consistent with z surveys

Now fix M* and constrain α

Constrain alpha only?

$\alpha=-1.19+/-0.08$

Important confirmation of α, as methodology is independent of the z incompleteness.

The generic local luminosity function

$$
\begin{aligned}
& \text { MGC } \quad M^{*}=-19.53, \quad \alpha=-1,19, \\
& \phi^{*}=0.0159 / M p{ }^{2} \wedge 3 \quad(h=1)
\end{aligned}
$$

Errors in published LFs $\phi(*)^{\prime}$'s (wrt MGCBRIGHT+2dFGRS LSS corr)
2dFGRS $+1 \%$ - Incompleteness

Correction
SDSS $\quad+51 \%-\quad$ Artifacts/Clustering

SSRS2 $+13 \% \quad$ Zwicky magnitudes ?
Durham/UKST $+6 \%-$??
ESP
$+21 \%$ - ???
MSO/APM
Afib
-32% - APM Calibration
$-5 \% \quad$ Combined
datasets?

The Local Luminosity Density

- The Luminosity Density is giv $j=L\left({ }^{*}\right) \phi\left({ }^{*}\right) \Gamma(\alpha+2)$
- SURVEY OLD j (x10^8Ld/Mpc^3) REVISED j

2dFGRS	1.90	1.77
SDSS	2.72	1.79
SSRS2	1.49	1.69
UKST	1.77	1.67
ESP	2.18	1.80
APM	1.14	1.67
Afib	1.74	1.82
CS	1.83	1.71
NOG	1.78	1.70
RANGE	$1.14-2.72$	$1.67-1.80$

The Fraction of Baryons in Galaxies

- Luminosity density is derived from the local LF:
- The LD is related to the matter-densit $\Omega_{M, \text { gals }}=\left(\frac{M}{L}\right) j$
- Adopting a mean baryon mass-to-light ratio for galaxies =>
- From Big Bang Nucleosynt| $\Omega_{\text {b,toal }}=0.020 h^{2}+/-0.002$
- From Big Bang Nucleosynthusions
- Fractio

$$
f_{b}(\text { gals } / \text { total })=(3.30+l-0.05)\left(\frac{M_{b}}{L}\right) \%<16.50 \%
$$

- So where are the baryons ?

The longer term plan; Galaxy Morphology

- The MGC is one component that will lead to constraints on:
- morphological evolution of galaxies via extraction of volume limited samples
- galaxy luminosity/merger evolution from galaxy counts and $N(z) s$
- Λ, by isolating the elliptical galaxies for which the uncertainties are less
- The power and scope of combined surveys:
- Precision morphological galaxy counts from $16<B<28$ mags
- $16<B<20$-MGC-BRIGHT
- $20<\mathrm{B}<28$ - Hubble Space Telescope (BBPAR/GOODS)
- Plus the redshift distributions
- $16<$ B < $20-2 \mathrm{dFGRS}+$ SDSS+missing via AAT (~ 7300 so far 2500 to get).
- $21<\mathrm{B}<24$ - BBPAR redshifts via GEMINI
- $21<B<26$ - Photometric redshifts for GOODS

Galloxies are are not like stars!

The power of combined datasets

The MGC-BRIGHT \geq campaicun

The Hubble Tuning Fork

Normal spirals

The Hubble Tuning Fork Breakdown

- Numerous new galaxy types have been found which do not fit on the original Hubble tuning fork diagram

- Other issues
- Subjective
- No physical basis
- Shoe-horning required

The BBD: A new methodology

- Surface brightness versus magnitude
- Quantitative
- Physical basis ? (SB -> ang. Mom., mag \rightarrow mass) \rightarrow

The path to Λ

- Isolate Elliptical galaxies:
- High surface brightness objects = easy to find and measure magnitudes for
- Simple systems relative to spirals and irregulars = easy to classify
- Old systems with low star-formation rates = minimal evolution
- 7 parameter model to predict $\mathrm{N}(\mathrm{m})$ and $\mathrm{N}(\mathrm{z})$
distribution Ean be measured locally from MGC-BRIGHT
$-\mathrm{M}^{\text {* }}$
$-\alpha$
$-\phi(*)$
Adopt parameters from latest simulations
- E(z)
- K(z)

Solve via 2-parameter $\chi^{\wedge} 2$ minimisation
$-\Omega_{M}$

Flliptical Galdaxy Counts

Uncertainties in Elliptical Number count models

Cosmology

$$
\begin{aligned}
& \Omega_{\mathrm{M}}=1.0, \Omega_{\mathrm{A}}=0.0 \\
& \Omega_{\mathrm{M}}=0.3, \Omega_{\mathrm{A}}=0.7
\end{aligned}
$$

Normalisation
 Wavelength (A)

Photometry

The Nearby Ellipticall LF

Current constraints from $\mathbb{N}(m)$ alone

Incorporating the uncertaintics

Need $\mathbb{N}(z)$ distributions to be viable:

- $N(z) s$ help to break the evolution-Lambda degeneracy

MGC Summary

- MGC-BRIGHT = A Rolls-Royce local catalogue of ~10,000 galaxies
- Z's for 7,000 galaxies to date (thanks to 2dFGRS+SDSS-EDR)
- $\mathbf{u}, \mathrm{B}, \mathrm{g}, \mathrm{r}, \mathrm{i}, \mathrm{z}$ photometry (thanks to SDSS-EDR)
- Preliminary Results:
- Galactic Halo axis ratio (c/a) $=0.60+/-0.05$ (errors to improve)
- No missing population of giant low surface brightness galaxies
- No missing population of giant compact objects
- 2dFGRS suffers ~8\% incompleteness in the imaging survey
- The 2dFGRS photometry is OK ($\sim+/-0.2$), but strong surface brightness bias
- SDSS-EDR may suffer from a 10\% contamination by artifacts
- SDSS-EDR photometry is good $(\sim+/-0.1)$ with no surface brightness bias
- The 2dFGRS LF provides the most reliable LF

Conclusions

- The MGC-BRIGHT is re-calibrating our insight into the local universe
- Interpretation of faint galaxy counts and $N(z) s$ is fundamentally flawed until local information is refined
- Morphology represents a new research avenue
- Elliptical counts could constrain Lambda, if other errors are minimal
- Lambda-evolution degeneracy broken via redshifts distributions
- With a revised local sample and N(z)s for HST samples we can:
- Simultaneously solve for Cosmology and Evolution
- Determine the rate and level of the evolution of other types (spirals and irregulars)

MGC Scope

The End

