

Spektrale Energieverteilung von röntgenselektierten Quasaren

Diplomarbeit an der Hamburger Sternwarte Fachbereich Physik Universität Hamburg

vorgelegt von

Steffen Nehls

Hamburg November 2003

Inhaltsverzeichnis

1	Ein	leitung	S	1					
2	Akt	ive Ga	alaxienkerne - AGN	5					
	2.1 AGN-Typen								
	2.2	Das ,u	unified scheme' der AGN	11					
		2.2.1	Der Aufbau von AGN	13					
		2.2.2	Vereinheitlichung von Seyfert-Galaxien	15					
	2.3	Die sp	ektrale Energieverteilung von Quasaren und Seyfert-Galaxien .	16					
3	Wie	e viele	AGN sind noch unentdeckt?	21					
	3.1	Fläche	endichte von AGN	22					
		3.1.1	Die vollständigen AGN-Durchmusterungen	23					
		3.1.2	Bestimmung der Flächendichte	24					
		3.1.3	AGN-Flächendichte F(B) für $14.25 \lesssim B \lesssim 21$	24					
	3.2	Die V	ollständigkeit des Véron-Katalog	27					
		3.2.1	Beschreibung des Katalogs	27					
		3.2.2	Datenselektierung	28					
		3.2.3	Flächendichte des Véron-Katalogs	29					
	3.3	Unent	deckte AGN	31					
4	Der	BSC-	AGN-Datensatz und die Datengrundlagen	35					
	4.1	Erstel	tellung des BSC-AGN-Datensatzes						
	4.2	Daten	quellen für den BSC-AGN-Datensatz	37					
		4.2.1	Röntgenbereich	38					
		4.2.2	Optischer Bereich	39					
		4.2.3	Nahes Infrarot	40					
		4.2.4	Radiobereich	42					
	4.3	Multiv	wellenlängeninformationen des BSC-AGN-Datensatzes	43					

5	6 Analyse der verschiedenen Frequenzbereiche								
	5.1	reitende Umrechnungen	45						
		5.1.1	Flüsse	45					
		5.1.2	K-Korrektur	47					
		5.1.3	Leuchtkräfte	48					
	5.2	Grund	legende Eigenschaften der BSC-AGN	49					
		5.2.1	Rotverschiebung z und optische Eigenschaften	49					
		5.2.2	Radiolaute und radioleise AGN	51					
		5.2.3	Bestimmung der Leuchtkraft	52					
		5.2.4	Diskussion der Leuchtkraftverteilungen	56					
		5.2.5	Spektralindex α	59					
6	Mit	tlere s	pektrale Energieverteilung – MED	63					
	6.1	nergieverteilung der BSC-AGN-Objekte	64						
	6.2	ich der BSC-MED mit der Elvis-MED	66						
		6.2.1	Einfluss der absoluten Helligkeit	68					
		6.2.2	Spektralindizes	70					
		6.2.3	Einfluss der Radiolautstärke	71					
7	Erg	ebnisse	2	75					
\mathbf{A}	Tabellen des BSC-AGN-Datensatzes								
	A.1	Aufste	ellung des BSC-AGN-Datensatzes	77					
	A.2	Daten	der unterschiedlichen Frequenzbänder \hdots	88					
в	SEI) aller	BSC-AGN-Objekte	115					
\mathbf{Li}	Literaturverzeichnis 137								

1. Einleitung

Die Faszination beim Betrachten einer Galaxie am Nachthimmel durch ein Teleskop, bewegt Menschen schon seit je her sich mit diesen interessanten Himmelsobjekten näher auseinanderzusetzen. Mit dem Bau immer besserer Teleskope, empfindlicherer Satelliten und der Entwicklung fortschrittlicherer Untersuchungsmethoden konnten die Wissenschaftler die Galaxien immer genauer studieren. Es wurden dadurch mehr und mehr außergewöhnliche Galaxien gefunden, die sich von den "normalen" Galaxien deutlich unterschieden. Kollidierende, riesengroße, extrem helle oder seltsam verformte Galaxien gab und gibt es in den Weiten des Weltalls zu entdecken. Das Verständnis über die Entstehung, die Entwicklung und das Ende einer Galaxie wächst mit jeder neuen, weiteren Untersuchung.

Eine besonders interessante Gruppe von Galaxien sind solche Galaxien mit einem besonders leuchtkräftigem Kern in ihrem Zentrum. Dieser Kern kann so hell werden, dass praktisch nur noch der Kern und nicht mehr die ihn umgebende Galaxie sichtbar ist. Diese besonders hellen aktiven Galaxien, besser gesagt deren helle Kerne, sind über weite kosmische Entfernung sichtbar und erscheinen dem Beobachter dann fast nur noch als Punktquelle. Sie unterscheiden sich, für einen Betrachter, im Optischen kaum noch von einem Stern. Diese als quasi stellare Objekte (kurz QSO) bezeichneten aktiven Galaxien und aktiven Galaxienkerne (engl. active galactic nuclei, kurz AGN) werden in dieser Arbeit genauer betrachtet.

Da die elektromagnetische Strahlung über viele Größenordnungen im Frequenzbereich zu beobachten ist, kann man versuchen, diese interessanten Galaxien auch über einen solchen weiten Frequenzbereich zu untersuchen. Die Verteilung der beobachtbaren Energie im Frequenzspektrum von röntgenselektierten Quasaren ist das Thema der Diplomarbeit, wobei Quasar aus dem englischen Begriff: "quasi stellar radio object" gebildet wird. Ich untersuche die globale Energieverteilung von röntgenselektierten Quasaren und Seyfert-1-Galaxien. Quasare und ihre leuchtkraftärmeren Cousins, die Seyfert-1-Galaxien, sind Galaxien mit extrem heller Kernregion, deren Energie sehr wahrscheinlich durch Akkretion von Gas in ein supermassives Schwarzes Loch erzeugt wird (z.B. Rees 1984). Gesucht wird nach Hinweisen, die Rückschlüsse auf die Energieerzeugungsmechanismen in den Galaxienkernen, also in der Umgebung des schwarzen Lochs, erlauben. Mit Hilfe der Röntgen-, der optischen und zusätzlicher Infrarot- und Radiodaten kann die globale Energieverteilung der Röntgen-AGN grob bestimmt werden. Diese Informationen stammen aus verschiedenen Datenbanken:

Hamburg/RASS Catalogue of optical Identificatons - HRC (Zickgraf et al. 2003) Catalogue of Quasars and Active Nuclei (Véron-Cetty & Véron 2000) ROSAT All-Sky Survey (Voges et al. 1999) Two Micron All Sky Survey - 2MASS (Skrutskie et al. 2000) NRAO VLA Sky Survey - NVSS (Condon et al. 1998)

Die Ausgangsbasis für die Arbeit stellt der HCR dar, aus dem röntgenemittierende AGN ausgewählt wurden. Während der weiteren Arbeit entstand ein neuer Objektdatensatz (BSC-AGN-Datensatz) von 253 optisch hellen röntgenselektierten AGN. Aus den verschiedenen Katalogen wurden dann Daten der anderen Frequenzbereiche zusammengestellt. Es lässt sich mit den Informationen, Helligkeiten umgerechnet in Flüsse, der genannten Datenbanken ein Verhältnis der emittierten Flüsse in den unterschiedlichen, zugrundeliegenden Frequenzen berechnen. Diese Verhältnisse, auch als Spektralindizes bezeichnet, sind korreliert mit den physikalischen Bedingungen in der Umgebung des schwarzen Lochs. Es gibt immer mehr Hinweise dafür, dass starke Radioemission mit einer hohen Masse des Schwarzen Lochs zusammenhängt (Laor 2000; McLure et al. 2000; Lacy et al. 2001).

Grundsätzlich enthält die spektrale Energieverteilung Informationen über den Akkretionsprozess und die Entstehung von elektromagnetischer Strahlung in der Umgebung des supermassiven Schwarzen Lochs. Somit können dann Modelle für den Aufbau der Akkretionsscheibe, den Akkretionsprozess der einfallenden Materie und den Energieerzeugungsprozess der emittierten Strahlung an den Eigenschaften der spektralen Energieverteilung getestet werden. Die Energieverteilung der AGN über etwa 9 Größenordnungen ist, im Gegensatz zu Sternen, keine einfache Schwarzkörperstrahlung sondern kann besser durch ein Potenzgesetz beschrieben werden. Die sich stellenden Fragen werden sein, in wie weit sich die gewonnenen spektralen Energieverteilungen, oder auch eine gemittelte und nach Radiolautstärken unterteilte Energieverteilung wie bei Elvis et al. (1994), mit den bekannten Modellen beschreiben lassen. Existiert ein und derselbe Energieerzeugungsmechanismus für Quasare und Seyfert-Galaxien? Wie sind die Leuchtkräfte dieser AGN verteilt, und hat diese Verteilung Einfluss auf die spektrale Energieverteilung? Gibt es Korrelationen der bestimmten Spektralindizes mit spektralen Eigenschaften des AGN? Ziel dieser Arbeit ist es, die spektralen Energieverteilung der AGN des BSC-AGN-Datensatz unter verschiedenen Aspekten mit der Arbeit von Elvis et al. (1994) zu vergleichen und daraus Schlussfolgerungen zu ziehen. Desweiteren wird eine Analyse der gebildeten Spektralindizes vorgenommen, die möglicherweise Aufschluss über Eigenschaften des AGN geben können.

Das nachfolgende Kapitel 2 beschreibt die grundlegenden Eigenschaften, die Klassifikationstypen, das Vereinheitlichungsmodell (engl. unified scheme) und die spektrale Energieverteilung von AGN. Das Kapitel "Wie viele AGN sind noch unentdeckt?" beschäftigt sich zwar nicht mit dem Aspekt der spektralen Energieverteilung, jedoch wird untersucht wie vollständig optisch helle AGN bis zu einer bestimmten Grenzhelligkeit heute bekannt sind. Durch die Arbeit mit den Katalogen, speziell des Véron-Cetty- und Véron-Katalogs, kann die aufgeworfene Frage beantwortet werden. Die Frage der Vollständigkeit gilt auch für den BSC-AGN-Katalog. Die Entstehung des BSC-AGN-Datensatzes wird in Kapitel 4 erläutert und es wird genauer auf die

3

Datenquellen und die Zusammenstellung der Daten für die spektrale Energieverteilung eingegangen. Im fünften Kapitel werden die Flüsse und Leuchtkräfte berechnet, sowie Korrelationen zwischen den Leuchtkräften untersucht. Danach wird in Kapitel 6 die spektrale Energieverteilung konstruiert, Ergebnisse zusammengestellt und diskutiert. Abschließend folgt dann eine Zusammenfassung.

2. Aktive Galaxienkerne – AGN

Die Beobachtung des Phänomens von aktiven Galaxienkernen, nachfolgend immer als AGN bezeichnet, in einem gewissen Prozentsatz aller bekannten Galaxien muss eine physikalisch bedingte Ursache besitzen. Bezeichnenderweise besitzen diese aktiven Galaxienkerne eine besonders aktive und leuchtkräftige Kernregion. Die in der Kernregion des AGN erzeugte Leuchtkraft kann um einen Faktor 100 oder mehr die Gesamtleuchtkraft der eigentlichen Galaxie übersteigen. Unsere Milchstraße besitzt als inaktive Galaxie eine Gesamtleuchtkraft $L = 1.5 \ 10^{11} \ L_{\odot}$. Mit einer Sonnenleuchtkraft von $L_{\odot} = 3.82 \ 10^{33} \ {\rm erg \ s^{-1}}$ ergibt sich damit eine Gesamtleuchtkraft von $L = 5.74 \ 10^{44} \ \text{erg s}^{-1}$. Bei einem Faktor 100 oder mehr ergeben sich Gesamtleuchtkräfte von $L \approx 10^{46-47}$ erg s⁻¹. Ein AGN mit dieser Gesamtleuchtkraft ist im Frequenzspektrum über fast 9 Größenordnungen beobachtbar. Vom Radiobereich $(\nu \approx 10^9 \text{ Hz})$ bis zum Röntgenbereich $(\nu \approx 10^{18} \text{ Hz})$ erstreckt sind das Spektrum der AGN. Hinzu kommt, dass die hundertfache Leuchtkraft im einem Kernbereich der Galaxie erzeugt wird, deren Größe etwa $< 2 \cdot 10^{14}$ cm (Edelson et al. 1996) beträgt. Das eine solch enorme Leuchtkraft in einem kosmisch so kleinen Volumen entsteht, kann nur zu dem Schluß führen, dass normale stellare Prozesse dafür nicht in Betracht kommen können. Durch die in Sternen stattfindende Kernfusion kann nicht ausreichend Leuchtkraft in einem so kleinen Volumen erzeugt werden. Bei diesem Prozess der Kernfusion wird Materie nur zu etwa 1% in Strahlung umgewandelt, und es müsste sich um eine ultrakompakte Sternenansammlung handeln, mit extremen Rahmenbedingungen bei Stabilität und Lebensdauer. Somit müssen andere physikalische Prozesse in Betracht gezogen werden, um diese spektrale Energieverteilung zu erklären.

Es ist allgemein akzeptiert, dass die beobachteten Leuchtkräfte durch Akkretion von Materie in ein supermassives Schwarzes Loch beschrieben werden können. Diese Modellvorstellung geht zurück auf Arbeiten von Zel'Dovich & Novikov (1964) und Salpeter (1964). Durch starke gravitative Kräfte wird umliegende Materie in Richtung des supermassiven Schwarzen Loches beschleunigt und formt dabei auch eine Akkretionsscheibe aus. Die nach innen gerichtete gravitative Kraft wird ausgeglichen oder übersteigt die nach außen gerichtet wirkende Kraft des Strahlungsdrucks. Zur Erhaltung der Stabilität der Quelle muss die nach innen wirkende Kraft größer oder gleich der nach aussen wirkenden Kraft sein. Daß diese Quellen stabil sind, wird durch die Beobachtung über unterschiedliche kosmische Entfernungen und damit auch lange Zeiträume bestätigt. Die beiden Kräfte werden zur Bestimmung des Zusammenhangs von Leuchtkraft L und Masse M des Schwarzen Loches in Abschnitt 2.2.1 verwendet.

Es scheint klar zu sein, dass ein Modell nur übergreifend beschreiben kann, was in der Natur, besser im Kosmos, an Phänomenen bei AGN beobachtet werden kann. Durch den nächsten Abschnitt wird dieser Aspekt besonders deutlich, da er die verschiedenen beobachteten Typen von AGN näher beschreibt.

2.1 AGN-Typen

In diesem Abschnitt werden die einzelnen beobachteten Typen von AGN genauer vorgestellt. Zu diesen beobachteten Typen von AGN zählen die Seyfert-Galaxien, die Quasare, die Radio-Galaxien, "low-ionization nuclear emission-line region galaxies", kurz LINERs, BL Lac Objekte und optisch stark Veränderliche. Dabei soll das Hauptaugenmerk auf den Seyfert-Galaxien und den Quasaren liegen, denn diese beiden Typen sind für den späteren Teil dieser Art von größerer Bedeutung. Es gibt darüber hinaus noch weitere Galaxientypen, die mit dem Phänomen AGN in Verbindung gebracht werden, aber nicht weiter besprochen werden. Dies sind:

- Starburst Galaxien
- Markarian Galaxien
- Zwicky Galaxien und N Galaxien
- Ultraleuchtkräftige Fern-Infrarot Galaxien

– "Narrow-line x-ray galaxies", übersetzt ,schmale' Emissionslinien Röntgengalaxien

Seyfert-Galaxien

Diese Gruppe von AGN wurde dem Astronom Carl Seyfert zu Ehren so benannt, und geht auf die von ihm eingeführte morphologische Klassifikation zurück (Seyfert 1943). Eine Seyfert-Galaxie ist dem Aussehen nach im Optischen sehr häufig eine normale Spiralgalaxie , nur mit eingesetztem "Stern" im seinem Zentrum (McLeod & Rieke 1995; Sarajedini et al. 1999). Der "Stern" ist die aktive Kernregion des AGN. Durch spätere spektroskopische Untersuchung wurden starke hochionisierte Emissionslinien in den Spektren von Seyfert-Galaxien entdeckt. Erst durch genauere Untersuchungen der Emissionslinien von Khachikian & Weedman (1974) wurden die heute bekannten zwei Haupttypen definiert. In diesen AGN mit absoluter Helligkeit $M_B > -21.5 + 5\log(h_0)$ sind auch schwache Absorptionslinien nachweisbar. Die Größe $h_0 = \frac{H_0}{100 \text{ km s}^{-1} \text{ Mpc}^{-1}}$ ergibt sich aus der Hubble-Konstanten H_0 ($[H_0] = \text{ km s}^{-1} \text{ Mpc}^{-1}$). Die Quasare sind mit einer absoluter Helligkeit $M_B \leq -21.5 + 5\log(h_0)$ definiert. Diese Art der Unterteilung von Seyfert-Galaxien und Quasaren (Schmidt & Green 1983) wird heute als rein formale Grenze zwischen diesen beiden Typen angesehen.

Seyfert-1-Galaxien

Der Typ 1 Seyfert-Galaxien besitzt zwei Arten von Emissionslinien. Zum Einen sind dies die ", broad' emission lines", also ,breite' Emissionslinien, deren zugehörige Dopplergeschwindigkeit etwa zwischen $v \approx 10^3$ und $v \approx 10^4$ km s⁻¹ liegt. Diese Linien, charakteristisch für ein Elektronengas mit hoher Dichte ($n_e \approx 10^9$ cm⁻³), sind durch erlaubte Dipolübergänge bei den Gaselementen gekennzeichnet. Die verbotenen Dipolübergänge sind aufgrund der hohen Dichte stoßunterdrückt. Das Entstehungsgebiet der ,breiten' Emissionlinien wird "broad line region" (BLR) genannt.

(a) Eine Zweifilteraufnahme der Seyfert-1.2-Galaxie NGC 7469 mit dem OLT

(b) Das optisches Spektrum der Seyfert-1-Galaxie NGC 5548 im Ruhewellenlängensystem (Ruhewellenlänge, engl. Rest wavelength)

Abbildung 2.1: Der Typ 1 von Seyfert-Galaxien ist häufig in einer Spiralgalaxie zu finden. Die Spiralgalaxie NGC 7469 wurde von mir mit dem Hamburger Oskar-Lühnig-Teleskop (OLT) beobachtet (a) und dazu ist das typische optische Spektrum der Seyfert-1-Galaxie NGC 5548 zu sehen (b), entnommen aus Peterson (1997).

Zum Anderen lassen sich ",
narrow' emission lines", übersetzt 'schmale' Emissionslinien, im Spektrum be
obachten, deren zugehörige Dopplergeschwindigkeit etwa be
i $v \approx 10^2 \ \rm km \ s^{-1}$ liegt. Diese Linien, charakteristisch für ein Elektron
engas mit geringerer Dichte ($n_e \approx 10^3 - 10^6 \ \rm cm^{-3}$), zeigen verbotene Dipolübergänge. Auch hier wird das Entstehungsgebiet der 'schmalen' Emissionlinien, analog zur BLR, "narrow line region" (NLR) genannt.

Seyfert-2-Galaxien

Im Gegensatz zu den Seyfert-1-Galaxien, besitzt der Typ 2 Seyfert-Galaxien nur "narrow' emission lines", also "schmale' Emissionslinien, im Spektrum mit der zugehörigen Dopplergeschwindigkeit von etwa $v \approx 10^2$ km s⁻¹. Diese Emissionslinien lassen sich sowohl für verbotene als auch erlaubte Übergänge beobachten. Zu den erlaubten Linienübergängen zählen unter anderem die des neutralen Wasserstoffs H I, des Heliums He I des Kohlenstoffs C IV, des Sauerstoffs O VI und des Eisens Fe II im sichtbaren Bereich. Zu den verbotenen Linienübergängen zählen unter anderem die des Sauerstoffs [O I], [O II], [O III], des Stickstoffs [N I] und des Neons [Ne II], [Ne III]. Die Anzahl der bekannten Seyfert-2-Galaxien ist größer als die Anzahl der bekannten Seyfert-1-Galaxien (Véron-Cetty & Véron 2000). Das Anzahlverhältnis der Seyfert-Galaxien wird in Abschnitt 2.2.2 zur Bestimmung eines Bedeckungsfaktors des inneren Bereichs des AGN verwendet.

Die Klassifikation als Seyfert-1-Galaxie oder Seyfert-2-Galaxie basiert somit auf dem Erscheinungsbild des Linienprofils von 'breiten' und/oder 'schmalen' Emissionslinien im Spektrum. Aufgrund weiterer Beobachtungen von Seyfert-Galaxien entdeckte man in Spektren Linienprofile, die den beiden einfachen Grundtypen nicht exakt entsprachen. Osterbrock (1977, 1981) führte dazu eine Notation für Zwischentypen von Seyfert-Galaxien ein. Diese Typen werden als Seyfert 1.2, Seyfert 1.5, Seyfert 1.8 und Seyfert 1.9 bezeichnet. Mit einer immer schwächer werdenden 'breiten' Emissionslinienkomponente, gegenüber der 'schmalen' Emissionslinienkomponente, sind die Seyferttypen numerisch aufsteigend klassifiziert. So gibt es zum Beispiel beim Seyfert 1.9 Typ eine 'breite' Emissionslinienkomponente nur bei der H α -Linie, jedoch nicht bei den höheren Ordnungen der Balmerserie (H β , H γ ,...) (Heckman 1980; Winkler 1992; Véron-Cetty & Véron 2001). Bei den Seyfert 1.5-Galaxien liegt das Verhältnis R der Linienflüsse von H β und [O III] λ 5007 zwischen $R > \frac{1}{3}$ und R < 2. Für die Seyfert 1.2-Galaxien hingegen zwischen R > 2 und R < 5 (Véron-Cetty & Véron 2000).

Eine weitere Untergruppe der Seyfert-Galaxien sind die sogenannten "narrow-line Seyfert-1-Galaxies", kurz NLSy1. Diese Seyfert-Galaxien zeigen in ihrem optischen Spektrum relative schmale erlaubte Emissionlinien, die in ihrer zugehörigen Doppler-geschwindigkeit nur etwa goßer sind als die verbotenen Emissionslinien. Seyfert-1-Galaxien werden als NLSy1 klassifiziert, wenn die Emissionslinie eine volle Breite bei halbem Maximum (engl. full-width-half-maximum, kurz FWHM) von FWHM $(H\beta) < 2000 \text{ km s}^{-1}$ (Goodrich 1989) hat und das Verhältnis [O III]/H $\beta < 3$ ist (Osterbrock & Pogge 1985).

Das Spektrum einer Seyfert-Galaxie kann recht deutlich vom Spektrum einer normalen Galaxie mit HII-Regionen unterschieden werden. Die Seyfert-Spektren zeigen einen weiteren Bereich an Ionizationsgraden als die normalen Galaxien mit HII-Regionen. Dieser Ionisationsgrad entspricht einem Gas, das durch ein langsam abfallendes Kontinuum, in Richtung gößeren Wellenlängen, ionisiert wird. Hingegen fällt das Kontinuum von Sternen im Wienschen Bereich ihrer Schwarzkörperstrahlung stark ab. Die beobachteten Ionisationszustände in Seyfert-Galaxien können dadurch nicht erklärt werden. Mit der Bestimmung des Flussverhältnisses von [O III] λ 5007 / $H\beta$ > 3 lassen sich H II-Regionen ungefähr von Seyfert-Galaxien unterscheiden. Eine neuere Methode zur Unterscheidung der verschiedenen Klassifikationstypen ist die Erstellung von diagnostischen Diagrammen. Auf diesen Aspekt der Trennung gehe ich im Abschnitt über die LINERs genauer ein.

Quasare

Durch eine Begrenzung der Seyfert-Galaxien auf AGN mit einer absoluten Helligkeit $M_B > -21.5 + 5 \log(h_0)$, wird nur ein Teil der beobachtbaren AGN beschrieben. Die Gruppe von AGN mit absoluter Helligkeit $M_B \leq -21.5 + 5 \log(h_0)$ werden Quasare genannt. Die Quasare stellen die weitaus größte Gruppe dar, deren Anteil bei $\sim 80\%$ aller bekannten AGN liegt. Bei den morphologischen Typen von Galaxien sind Quasare nicht auf den Typus Spiralgalaxien beschränkt, wie dies hauptsächlich bei den Seyfert-Galaxien der Fall ist. Man findet als Muttergalaxien sowohl elliptische Galaxien als auch Spiralgalaxien. Die ursprüngliche Definition eines Quasars geht auf die Entdeckungen in den 50er Jahren zurück. Bei den Untersuchungen des Himmels im Radiobereich, wie dem 3C (Edge et al. 1959) und dem 3CR (Bennett 1962), wurden starke Radioquellen entdeckt, die dann mit optischen Gegenstücken identifiziert werden konnten. Dabei entdeckte man als optisches Gegenstück häufig Galaxien, manchmal jedoch auch sternförmig aussehende Objekte. Basierend auf diesen Entdeckungen entstand im englischen der Begriff: "quasi stellar radio object". was man zum Wort Quasar abgekürzt hat. Im Gegensatz zu Seyfert-Galaxien sind Quasare im allgemeinen auf Photoplatten nicht räumlich aufgelöst, d.h. ihre scheinbare Winkelgröße ist kleiner als wenige Bogensekunden. Auf den Photoplatten des Palomar Sky Survey beträgt diese Winkelgröße $\approx 7''$ (Peterson 1997).

Das Spektrum eines Quasars unterscheidet sich kaum vom Spektrum einer Seyfert-1-Galaxie. Jedoch sind die Absorptionslinien des Seyfertspektrum nur sehr schwach, wenn überhaupt, im Quasarspektrum vorhanden. Ebenso sind die "schmalen" Emissionlinen, im Verhältnis zu den "breiten" Emissionlinien, im Quasarspektrum schwächer ausgeprägt. Die Quasare emittieren in einem Wellenlängenbereich von $\approx 100 \ \mu m$ bis $\approx 100 \text{ keV}$ ihre gesamte Energie (Elvis et al. 1994).

Eine der wichtigsten Eigenschaften der Quasare ist die Rotverschiebung z. Diese Rotverschiebung z lässt sich klassisch betrachtet definieren als:

$$z = \frac{\lambda - \lambda_0}{\lambda_0} = \frac{\lambda}{\lambda_0} - 1 \tag{2.1}$$

Die emittierte Wellenlänge λ_0 des Quasars entspricht der beobachteten Wellenlänge λ . Im Rahmen eines expandierenden Kosmos kann man die Rotverschiebung auch als Entfernung r verstehen:

$$z = \frac{H_0}{c}r\tag{2.2}$$

Die Hubblekonstante H_0 und die Vakuumlichtgeschwindigkeit c ($[c] = \text{ km s}^{-1}$) sind Konstanten und damit ist die Rotverschiebung $z \sim r$. Mit den Beobachtungen von Quasaren ist es also möglich in die Weiten des Kosmos zu schauen. Sterne kann man noch in den nahesten Galaxien (kpc) sehen und Galaxien sind noch bis zu einigen Mpc beobachtbar. Die entferntesten Quasare dagegen, mit Rotverschiebungen $z \approx 6$, sind einige Milliarden pc entfernt. Das entspricht schon wesentlichen Bruchteilen des Gesamtalters des Universums. Bei diesen Rotverschiebungen ist die Näherungsformel 2.2 nicht mehr gültig und es muss zur Bestimmung der Entfernung mit einer relativistischen Kosmologie gerechnet werden.

Radiogalaxien

Bei den Radiountersuchungen entdeckte man auch extrem starke Radioquellen, die im Optischen häufig mit großen elliptischen Galaxien identifiziert wurden. Es sind jedoch auch starke Radioquellen mit AGN, zumeist Quasaren, identifiziert worden. Es gibt dabei zwei Arten von sehr starken Radiogalaxien, deren optisches Spektrum dem eines Quasars entspricht. Es handelt sich hierbei um die "steep spectrum radio quasars" (SSRQ) und die "flat spectrum radio quasars" (FSRQ) (Urry & Padovani 1995). Die Definition zwischen "steep" und "flat" ist abhängig von der Steigung α des Radiokontinuums und wird bei $\alpha_R = 0.5$ getrennt. Weitere Typen von Radiogalaxien sind die ", broad'-line radio galaxies" also ,breite' Emissionslinien Radiogalaxien, kurz BLRGs, und die ", narrow'-line radio galaxies" also ,schmale' Emissionslinien Radiogalaxien, kurz NLRGs. Sie sind die radiolauten Gegenstücke zu den Seyfert-1und Seyfert-2-Galaxien. Die BLRGs und NLRGs unterscheiden sich in einigen ihrer Eigenschaften dennoch von den Seyfert-Galaxien. Dies kommt besonders darin zu Ausdruck, dass sie hauptsächlich nur in elliptischen Galaxien vorkommen, Seyfert-Galaxien kommen hauptsächlich in Spiralgalaxien vor. Im Kern der Galaxie befindet sich fast immer ein ultrakompakter Radiokern mit flachem Radiospektrum und ausgedehnten Komponenten, die sich manchmal mit scheinbarer Uberlichtgeschwindigkeit vom Zentrum entfernen. Bei einigen Radiogalaxien sind auch sogenannte Jets beobachtbar, deren Ursprung sich im ultrakompakten Radiokern befindet. Auf die Jets wird Abschnitt2.2 noch weiter eingegangen.

Die ausgedehnten Komponenten unterteilen sich in zwei Leuchtkraftklassen (Fanaroff & Riley 1974). Die Klasse I (FR I) Radioquelle besteht aus einem hellen

Zentrum und einer zu den Enden hin abnehmenden Radioflächenhelligkeit. Diese Radioquellen sind nicht so leuchtkräftig wie die Klasse II (FR II). Die FR II Radioquellen besitzen einen nicht so ausgeprägten Radiokern, sind dafür aber in den ausgedehnten Bereichen, besonders auch an deren Kanten, starke Radioemitter. Die Quasare sind mit ihren Radioeigenschaften den FR II-Radiogalaxien zuzurechnen.

Der Radiofluss F_5 (bei $\nu = 5$ GHz) eines AGN wird häufig mit dem Fluss im optischen Bereich (F_B im B-Band) verglichen. Das Verhältnis $R = F_5 / F_B$ der Flüsse (Kellermann et al. 1989) wird zur Unterscheidung von "radiolauten" und "radioleisen" AGN benutzt, mit $R \gtrsim 10$ für die "radiolauten" AGN. Etwa 15%-20% aller AGN sind "radiolaut" (Kellermann et al. 1989; Visnovsky et al. 1992).

BL Lacs und OVVs

Eine weitere Gruppe von AGN stellen die BL Lacs und die "optical violent variables", also optisch stark Veränderlichen, kurz OVVs, dar. Generell zeigen fast alle AGN in ihrer Kontinuumsstrahlung eine zeitliche Variabilität. Diese Variabilität erstreckt sich über Wochen, Monate oder Jahre. Einige außergewöhnliche AGN jedoch ändern innerhalb von Tagen ihre Helligkeit um mehr als 0.1 Größenklasse. Hinzukommt, dass die empfangene Strahlung dieser OVVs hoch polarisiert ist und diese Strahlung zeitlich und im Positionswinkel variieren kann. Der Polarisationsgrad kann bis zu einigen 10% erreichen. Die OVVs unterscheiden sich damit deutlich von den anderen AGN, deren Polarisation unter 1% liegt. Die Gruppe der OVVs sind zudem ,radiolaute' AGN.

Einige der Eigenschaften der OVVs besitzen auch die ,BL Lac Objekte', die nach ihrem Prototyp BL Lacertae benannte wurden. BL Lacertae wurde zunächst als veränderlicher Stern angesehen und nicht als AGN erkannt (MacLeod & Andrew 1968). Durch eine Untersuchung des Spektrum ergab sich eine für einen Stern nicht erklärbar hohe Rotverschiebung, und man klassifizierte ihn daraufhin als AGN (Oke & Gunn 1974). Das Spektrum eines BL Lacs weist fast keine Emissionslinien auf und nur in hochaufgelösten Spektren lassen sich schwache Absorptionslinien von Sternen der Galaxie finden. Die BL Lacs sind stark variabel in ihren Helligkeiten und besitzen einen hohen Polarisationsgrad.

Aufgrund der ähnlichen Eigenschaften von OVVs und BL Lacs wird angenommen, dass die Sichtlinie des Beobachters in Richtung einer relativistisch gebeamten Komponente des AGN liegt. Diese beiden Typen von AGN werden häufig unter dem Begriff ,Blazar' zusammengefasst. Alle bekannten Blazare sind zu den ,radiolauten' AGN zu zählen.

LINERs

Die "low-ionization nuclear emission-line region galaxies", kurz LINERs, sind von Heckman (1980) erstmals identifiziert worden. Diese Galaxien besitzen eine vergleichsweise geringe Kernleuchtkraft, gegenüber den bisher betrachteten Gruppen von AGN. Es sind auch nicht bei allen LINERs die Merkmale eines AGN zu beobachten. In spektroskopischen Beobachtungen unterscheiden sich die LINERs jedoch wenig von Seyfert-2-Galaxien, ausgenommen von besonders starken Linien mit geringem Ionisationsgrad. Es sind dies zum Beispiel Linien von Sauerstoff [OI] λ 6300 und Stickstoff [NII] $\lambda\lambda$ 6548, 6583. LINERs sind sehr häufig im Kosmos und können in fast der Hälfte alle Spiralgalaxien nachgewiesen werden (Ho et al. 1993). Der Anregungsmechanismus der LINERs ist sehr kontrovers (Véron-Cetty & Véron 2000) und reicht von stellarer Anregung bis zu speziellen Annahmen für den Akkretionsprozess. Bei den Seyfert-Galaxien war eine grobe Trennung von den HII-Regionen durch das Flussverhältnis $[O III]\lambda$ 5007 / H β gegeben. Dies ist jedoch kein ausreichender Indikator für eine eindeutige Trennung. Baldwin et al. (1981) zeigen, dass durch die Wahl von zwei Flussverhältnissen eine Trennung von Seyfert-Galaxien, LINERs und H II-Regionen möglich ist. Es eignen sich dazu die Flussverhältnisse von $[O III]/H\beta$, $[N II]/H\alpha$ und $[S II]/H\alpha$. In sogenannten diagnostischen Diagrammen werden die Seyfert-Galaxien, LINERs und H II-Regionen, LINERs und H II-Regionen in unterschiedlichen Bereichen zu finden sein.

AGN-Typ	Eigenschaften
Seyfert-1-Galaxie	– zwei Arten von Emissionslinien
	– ,schmale' Emissionslinien mit Dopplergeschwindigkeiten
	von 10^2 km s^{-1}
	– ,breite' Emissionslinien mit Dopplergeschwindigkeiten
	von 10^3 - 10^4 km s ⁻¹ , nur für erlaubte Linienübergänge
	– beobachtbare Muttergalaxie
	– AGN mit absoluter Helligkeit $M_B > -21.5 + 5\log(h_0)$
Seyfert-2-Galaxie	– nur eine Art von Emissionslinien
	– ,schmale' Emissionslinien mit Dopplergeschwindigkeiten
	$von \ 10^2 \ km \ s^{-1}$
	– keine ,breiten' Emissionlinien
	– beobachtbare Muttergalaxie
	– AGN mit absoluter Helligkeit $M_B > -21.5 + 5\log(h_0)$
Quasar	– besitzen Emissionslinien wie die Seyfert-1-Galaxien
	– spektralen Eigenschaften ähnlich den Seyfert-1-Galaxien
	– AGN mit absoluter Helligkeit $M_B < -21.5 + 5log(h_0)$
	– sehr kleine Winkelausdehnung, sternförmig
Radiogalaxie	– starke Radioquellen
	– zwei Radiomorphologietypen, FR I und FR II
	– zwei Typen von Spektren, BLRGs und NLRGs
	– sind Analogon zu den Seyfert-1- und Seyfert-2-Galaxien
BL Lacs und OVVs	– kurzzeitlich Variationen $>0.1 \text{ mag} (\approx 1 \text{ Tag})$
	– hoher Polarisationsgrad, der zeitlich variiert
	– zeitlich variable Helligkeiten
	– zeigen keine Emissionslinien im Spektrum
	– stark Radioquellen
LINERs	– leuchtkraftschwache AGN
	– ein großer Anteil der Spiralgalaxien sind LINERs
	– Flussverhältnisse von $[O III]/H\beta$, $[N II]/H\alpha$ und $[S II]/H\alpha$
	für eine Identifikation

Tabelle 2.1: Das Phänomen AGN ist bei vielen Galaxien beobachtet worden. Als Kriterien zur Klassifizierung der AGN-Typen können kurz folgende Punkte gelten.

2.2 Das ,unified scheme' der AGN

Gewisse Grundmerkmale von Eigenschaften scheinen, trotz der Vielfalt der beobachteten AGN-Phänomene, in allen beschriebenen Typen zu stecken. Ein physikalisches Modell ist immer dann am erfolgreichsten, wenn es sich auf wenige freie Parameter stützen kann und dennoch eine große Palette an Fällen beschreiben kann. Unter dem Begriff ,unified scheme' wird ein Modell verstanden, bei dem sich die verschiedenen AGN-Typen durch unterschiedliche Sehlinien auf ein und dieselbe Quelle erklären lassen. Die wesentlichen Parameter des Modells sind die Masse des Schwarzen Lochs (Kormendy & Richstone 1995; Richstone et al. 1998), der Prozess der Akkretion (Begelman 1985; Abramowicz et al. 1987; Narayan & Raymond 1999; Koratkar & Blaes 1999) und die Stärke und Form der Radioemission (Bregman 1990; Urry & Padovani 1995). Bei Lawrence (1987); Antonucci (1993); Urry & Padovani (1995) findet man sehr gute Reviewartikel über das ,unified scheme'.

Durch eine genauere Betrachtung des Aufbaus der AGN im nächsten Abschnitt werden die Grundlagen für die Vereinheitlichung der Seyfert-Galaxien gelegt.

Abbildung 2.2: Das ,unified scheme' für AGN ist eine mögliche Erklärung der verschiedenen AGN-Typen, aufgrund der Orientierung des Schwarzen Lochs (BH) und dessen Umgebung zur Sehlinie des Beobachters. Sehen wir den AGN von der Seite (Pfeil 1), so werden die Eigenschaften einer Seyfert-2-Galaxie gemessen. Die Seyfert-Typen 1.8 und 1.9 entsprechen einer Sehlinie (2) durch die Randbereiche des Torus. Bei den Seyfert-1-Galaxien (3) verdeckt der Torus den inneren Bereich nicht mehr. Ist die Blickrichtung nahe am Jet (4), so kann das Spektrum eines BL Lacs oder OVVs beobachtet werden. Die Akkretionsscheibe (AD) und die BLR befinden sich innerhalb des verdeckenden Torus. Die NLR hingegen wird nicht mehr vom Torus verdeckt. Beginnend in der Nähe des Schwarzen Loches, reicht der Jet häufig bis hinaus in die ausgedehnten Radiostrukturen der FR-Typen I und II. Aus den Kenntnissen über die verschiedenen Komponenten des AGN fertigte ich diese nicht maßstabsgetreue Grafik an.

2.2.1 Der Aufbau von AGN

Aus den Beobachtungen vieler AGN hat sich ein Modell über deren Aufbau im Laufe der Zeit entwickelt. Dieses Modell bringt das Schwarze Loch, die Akkretionsscheibe, die BLR, den Staub- und Gastorus, die NLR und den Jet in einen räumlichen Zusammenhang, der es mit möglichst wenig freien Parametern erlaubt viele verschiedene Aspekte der beobachteten Phänomene der AGN zu erklären. Bezeichnet wird das Modell mit dem Begriff "unified scheme". Im Abbildung 2.2 wird dieser räumliche Zusammenhang der verschiedenen Komponenten schematisch dargestellt.

Im Zentrum des AGN befindet sich ein supermassives **Schwarzes Loch** mit einer Masse M und einer assoziierten Leuchtkraft L. Im Stabilitätsfall sollte, wie eingangs des Kapitels erwähnt, die Kraft des Strahlungsdrucks $\vec{F}_{\rm rad} = \sigma_e L \vec{r}/4\pi r^2 c$ und die gravitative Kraft $\vec{F}_{\rm grav} = -GM(m_p + m_e)\vec{r}/r^2$ zumindest im Gleichgewicht oder $|\vec{F}_{\rm grav}|$ größer als $|\vec{F}_{\rm rad}|$ sein. Aus dieser Bedingung ergibt sich dann ein Zusammenhang für die assoziierte Leuchtkraft L und Masse M des Schwarzen Lochs.

$$\begin{aligned} |\vec{F}_{rad}| &\leq |\vec{F}_{grav}| \\ \frac{\sigma_e L}{4\pi r^2 c} &\leq \frac{GMm_p}{r^2} \\ L &\leq \frac{4\pi Gcm_p}{\sigma_e} M \end{aligned}$$
(2.3)

Wobei es sich bei G um die Gravitationskonstante, σ_e um den Wirkungsquerschnitt beim Stoß eines Elektrons mit einem Photon und bei m_p um die Protonenmasse handelt. Setzt man für Gleichung 2.3 die entsprechenden Größen ein, so lässt sich eine Näherung in gebräuchlichen astronomischen Einheiten angeben (M_{\odot} ist die Sonnenmasse):

$$L \leq 1.26 \cdot 10^{38} \frac{M}{M_{\odot}} \text{ergs s}^{-1}$$
 (2.4)
 $M \geq 7.94 \cdot 10^5 L_{44} M_{\odot}$

Die Gleichung 2.4 ist als Eddington Limit bekannt und ermöglicht die Bestimmung einer Mindestmasse des Schwarzen Loch bei vorgegebener Leuchtkraft. L_{44} ist die Leuchtkraft in Einheiten von 10^{44} ergs s⁻¹, die typischen Leuchtkräften von AGN entspricht. Bei einem AGN mit $L_{44} \approx 100$ ergibt sich dann eine Masse $M \approx 8 \cdot 10^7 M_{\odot}$. Die Massen der Schwarzen Löcher können von $M \approx 10^6 M_{\odot}$ bis zu mehr als $M > 10^9 M_{\odot}$ reichen (Laor 2000; Gebhardt et al. 2000). Unter der Annahme einer Masse $M \approx 8 \cdot 10^7 M_{\odot}$ ergibt sich daraus ein gravitativer Radius $r_g = G M/c^2$ (Rees 1984) von etwa $r_g \approx 1.5 \cdot 10^{11} M_8$ m = $1.2 \cdot 10^{11}$ m, hierbei ist M_8 die Masse in Einheiten von $10^8 M_{\odot}$.

Um das Schwarze Loch befindet sich eine **Akkretionsscheibe**, in der die einfallende Materie sich dem Schwarzen Loch nähert. Hier entsteht ein Teil des Kontinuums des AGN, der über viele Größenordnungen im Spektrum beobachtet werden kann. Dieser Teil reicht vom Optischen, über das Ultraviolette bis hin zum weichen Röntgenbereich. Im Reviewartikel von Koratkar & Blaes (1999) werden die verschiedenen Modelle für den Aufbau der Akkretionsscheibe ausführlich beschrieben. Für die weitere Arbeit werden diese Modelle nicht weiter betrachtet, da die Informationen über die AGN des BSC-AGN-Datensatzes dazu nicht ausreichen. Dennoch bleibt hier festzuhalten, dass im Bereich der Akkretionsscheibe der Hauptanteil der enormen Leuchtkraft, typisch mit $L > 10^{44}$ ergs s⁻¹, des AGN entsteht (Bregman 1990).

Die nächste Komponente beim Aufbau eines AGN ist die **BLR**. Durch Messungen von Signallaufzeitunterschieden (engl. reverberation mapping, Blandford & McKee 1982; Netzer & Peterson 1997; Peterson & Wandel 2000) ergibt sich eine Größe R der BLR im Bereich von Lichttagen $(R \approx 10^{13} \text{ m})$ oder Lichtwochen $(R \approx 10^{14} \text{ m})$ (Kaspi et al. 2000). Die BLR besteht aus Gaswolken, die sich im Schwerefeld des Schwarzen Loches bewegen. Aus Kapitel 2.1 über die Seyfert-Galaxien ist bekannt, dass hier die ,breiten' Emissionlinien entstehen. Die Kontinuumsstrahlung des inneren Bereichs, also der Akkretionsscheibe, ist der Anregungsmechanismus der BLR-Wolken. Diese werden photoionisiert und die angeregten Elektronen der Atomhülle erzeugen die Emissionslinien. Dabei wird häufig angenommen, dass die hochionisierten und niedrigionisierten Emissionslinien in verschiedenen Bereichen der BLR entstehen (Collin-Souffrin et al. 1988). Durch die Bewegung vieler BLR-Wolken $(N \approx 10^4 - 10^5)$ im Schwerefeld des Schwarzen Loches ergeben sich unterschiedliche Geschwindigkeiten und Bewegungsrichtungen. Die emittierten Linien der einzelnen Wolken ergeben in der Summe eine dopplerverbreiterte Emissionslinie.

Man nimmt an, dass der innere Bereich des AGN teilweise von einem **Staub- und Gastorus** verdeckt wird. Vom Betrachtungswinkel abhängig ist dieser Bereich verdeckt oder für eine direkte Beobachtung zugänglich. Der Torus befindet sich etwa $10^{15} - 10^{16}$ m vom Zentrum entfernt (Krolik & Begelman 1988; Bianchi et al. 2001 und Referenzen dortdrin) und besitzt einen annähernd kreisringförmigen Ausdehnungsbereich. In astronomischen Längeneinheiten entspricht die Entfernung des Torus vom Zentrum Bruchteile von Parsec bis einige Parsec. Dieser Torus ist keine homogene und regelmäßige radialsymmetrische aufgebaute Struktur um den zentralen Teil des AGN. Vielmehr besteht er aus Gas- und Staubwolken, die innerhalb des Ausdehnungsbereichs dennoch einen Bedeckungsfaktor von ≈ 1 besitzen (Krolik & Begelman 1988). Der Aufbau und die Absorptionseigenschaften der Wolken sind wichtig für die Betrachtung der AGN im Röntgenbereich. Ausführlicher gehe ich darauf im nächsten Abschnitt über die Vereinheitlichung der Seyfert-Galaxien ein.

Außerhalb des Staub- und Gastorus befindet sich die NLR. In Kapitel 2.1 wurde schon beschrieben, dass die "schmalen' Emissionslinien die NLR als Ursprungsort haben. Analog zur BLR bewegen sich die Wolken der NLR ebenfalls im Schwerefeld des AGN und besitzen unterschiedliche Geschwindigkeiten und Bewegungsrichtungen. Jedoch ist die Verteilung der Geschwindigkeiten im Mittel ($\bar{v} \approx 10^2 \text{ km s}^{-1}$) kleiner als bei der BLR ($\bar{v} \approx 10^3 - 10^4 \text{ km s}^{-1}$). Bei einer Bewegung der Wolken im Gravitationspotential des Schwarzen Loches wird dies auch erwartet. Ein weiterer Unterschied zur BLR ist, dass in einigen nahe gelegenen Seyfert-Galaxien die NLR mit dem Teleskop auflöst werden kann. Somit ließ sich auch feststellen, dass die NLR nicht sphärisch symmetrisch verteilt ist, sondern eher parallel zur Achse von ausgedehnten Radioemissionen des AGN liegt. Es kann auch ausgedehnte NLRs geben, die kurz ENLRs (engl. extended NLRs) genannt werden (Unger et al. 1987). Dies ist zum Beispiel bei NGC 2992 (Allen et al. 1999), bei Mrk 573 (Tsvetanov & Walsh 1992), bei der Seyfert-1-Galaxie ESO 362-G18 und der Seyfert-2-Galaxie ESO 362-G8 (Fraquelli et al. 2000) beobachtet worden. Die BLR in der Nähe des Schwarzen Loches ist um zwei Größenordnungen kleiner als die außerhalb des Torus liegende NLR. Sie beginnt bei etwa 10^{16} m und kann bei den ENLRs bis zu einigen kpc (10^{19} m) erreichen.

Es kann bei AGN auch häufig eine ausgedehnte Radiostruktur beobachtet werden. die am Zentrum des AGN beginnt und bis hinaus zu den großräumigen Radiostrukturen reicht. Dies sind die sogenannten **Jets**. Es handelt sich hier um einen Materieausstrom energiegeladener Teilchen (Koratkar & Blaes 1999), der entlang der Polachse des Torus oder der Akkretionsscheibe ausgerichtet ist. Die energiegeladenen Teilchen bilden ein kollimiertes Plasma, das sich mit relativistischen Geschwindigkeiten bewegt und Radiostrahlung emittiert. Die Jets besitzen eine Ausdehnung von etwa 10¹⁵ m bis zu einigen 10²² m. Aufgrund des Sichtwinkels der beiden Seyfert-Galaxientypen zu dieser Komponente sind ihre Radioeigenschaften nicht wesentlich unterschiedlich. Erst wenn die Sehlinie fast parallel und nahezu in Richtung der Achse des Jets liegt, spielen die Jets eine wichtige Rolle für das beobachtete optische Spektrum. In diesem Fall wird das optische Spektrum vom Kontinuum des Jets dominiert und es sind nur wenige Emission- oder Absorptionslininen nachweisbar. Liegt die Schlinie fast in Richtung des Jets, so tritt auch häufig ein Effekt auf, der die Strukturen des Jets sich scheinbar mit Geschwindigkeiten größer als die Lichtgeschwindigkeit bewegen lässt (Rees & Sciama 1966). Der Großteil der BL Lacs und FSRQ (engl. flat spectrum radio quasars) sind Quellen solcher scheinbaren überlichtschnellen Bewegung (Urry & Padovani 1995).

2.2.2 Vereinheitlichung von Seyfert-Galaxien

Basierend auf dem ,unified scheme' lassen sich die unterschiedlichen beobachteten Seyfert-Typen mit ein und demselben Aufbau eines AGN erklären. Die Frage ob man eine Seyfert-Galaxie, so oder so klassifiziert, hängt beim ,unified scheme' nur von Betrachtungswinkel ab, unter dem man die Seyfert-Galaxie sieht. Bei der Zusammenfassung der Eigenschaften der AGN-Typen (Tab.2.1) für eine Klassifikation von AGN fällt auf, dass sich Seyfert-1- und Seyfert-2-Galaxien nur in dem Vorhandensein/Abwesenheit von ,breiten' Emissionslinien unterscheiden. Die ,breiten' und ,schmalen' Emissionslinien entstehen in der BLR respektive in der NLR. Bei den Seyfert-2-Galaxien werden nur ,schmale' Emissionslinien im Spektrum gefunden, woraus geschlossen werden kann, dass die BLR nicht entlang der Sehlinie beobachtbar ist. Vielmehr ist sie durch den Staub- und Gastorus verdeckt (Sehlinie entspricht Pfeil 1 in Abbildung 2.2).

Erstmals wurde durch von Miller & Antonucci (1983); Antonucci & Miller (1985) bei der Seyfert-2-Galaxie NGC 1068 nachgewiesen, dass die BLR verdeckt ist und durch spektropolarimetrische Untersuchungen dennoch das merkmallose Kontinuum der Akkretionsscheibe im Streulicht nachgewiesen werden kann. Dieses polarisierte Streulicht entsteht an freien Elektronen außerhalb des Torus und es wird dadurch möglich, wie durch einen Spiegel, einen Blick in die verdeckten Bereiche des AGN nehmen zu können. Der Staub- und Gastorus ist vom Infrarot- bis zum Röntgenbereich optisch dicht genug, um über einen wesentlichen Teil des Raumwinkels den zentralen Bereich des AGN zu verdecken (Krolik & Begelman 1988). Unter einem anderen Betrachtungswinkel, ohne verdeckenden Torus, müsste NGC 1068 als Seyfert-1-Galaxie klassifiziert werden. Dass die Klassifikation der Seyfert-Galaxie NGC 1068 vom Betrachtungswinkel abhängig und keine andere intrinsische Eigenschaft den AGN-Typ bestimmt, war ein weiterer Anstoß zur Vereinheitlichung der Seyfert-Galaxien. Inzwischen ist bei einigen anderen Seyfert-2-Galaxien ein verdeckter Seyfert-1-Kern entdeckt worden (Miller & Goodrich 1990). Es wurden zum Beispiel mit dem Hubble Space Telescope bei Markarian 463 E (Miller & Goodrich 1990; Tremonti et al. 1996), mit dem Röntgensatelliten BeppoSAX (Boella et al. 1997) bei NGC 2210 (Malaguti et al. 1999) und mit spektroskopischen Methoden bei Was 49 (Moran et al. 1992) diese Seyfert-1-Kerne gefunden.

Heckman (1980) hatte die beiden Seyfert-Typen 1.8 und 1.9 definiert, mit schwachen aber sichtbaren ,breiten' Emissionslinien in H α und H β . Diese beobachteten Spektren lassen sich mit dem Vereinigungsmodell der Seyfert-Galaxien folgendermaßen erklären. Die Sehlinie für diese Typen geht durch den äußeren Rand des Torus und es kommt durch Extinktion zur Schwächung der ,breiten' Emissionlinie. Dennoch befindet sich der gleiche Typ von Quelle im Zentrum des AGN. In Abbildung 2.2 entspricht Pfeil 2 der Sehlinie in etwa den Seyfert-Typen 1.8 und 1.9.

Die Untersuchung der relativen Anzahl der Seyfert-1- zu den Seyfert-2-Galaxien (Anzahlverhältnis S_1/S_2) erlaubt eine Bestimmung des Bedeckungsfaktors des Torus. Dieser Bedeckungsfaktor entspricht dann einem Öffnungswinkel des Torus. Bei Bestimmungen des Anzahlverhältnisses von Maiolino & Rieke (1995) ergibt sich ein Verhältnis $S_1/S_2 = 2/3$ für Seyfert-1-Galaxien zu Seyfert-2-Galaxien. Phillips et al. (1983); Huchra & Burg (1992) untersuchten ebenfalls das Verhältnis und erhielten dabei einen Wert von $S_1/S_2 \approx 1/2$. Davon abweichend bestimmten Veron & Veron-Cetty (1986); Simkin et al. (1980) einen Wert von $S_1/S_2 \approx 1$ und Osterbrock & Shaw (1988) erhielten $S_1/S_2 \approx 1/3$. Das Verhältnis wird somit wohl etwa zwischen $S_1/S_2 = 2/3$ und $S_1/S_2 \approx 1/2$ liegen (Véron-Cetty & Véron 2000). Daraus ergibt sich ein Öffnungswinkel $\alpha = 2(90^{\circ} \cos^{-1}(S_1/S_2))$ von $\alpha \approx 84^{\circ}$ bis $\alpha \approx 60^{\circ}$ für den Staub- und Gastorus.

Abhängig von den Eigenschaften des Torus sollte harte Röntgenstrahlung und niederfrequente Strahlung (Ferninfrarot, Radio) sowohl bei Seyfert-1- als auch bei Seyfert-2-Galaxien von ähnlicher Leuchtkraft nachgewiesen werden können. Vom Optischen, Ultravioletten (UV) bis zum weichen Röntgenbereich (engl. soft X-ray) hingegen werden Seyfert-1- und Seyfert-2-Galaxien unterschiedliche Leuchtkräften zeigen Mulchaey et al. (1994); Véron-Cetty & Véron (2000). Bei den Untersuchungen von Mas-Hesse et al. (1995) an N = 111 AGN wird signifikant weniger UV und soft X-ray Strahlung für die Seyfert-2-Galaxien, gegenüber den Seyfert-1-Galaxien, beobachtet. Es wird ebenfalls im harten Röntgenbereich eine geringere Leuchtkraft bei Seyfert-2-Galaxien beobachtet, gegenüber den Seyfert-1-Galaxien. Dies wird beim ,unified schemes' nicht erwartet. Es wird hierin deutlich, dass es sich beim ,unified schemes' um ein Modell handelt und noch nicht zufriedenstellend alle beobachteten Effekte erklärt werden können.

2.3 Die spektrale Energieverteilung von Quasaren und Seyfert-Galaxien

Die außergewöhnliche spektrale Energieverteilung (engl. spectral energy distribution, SED) von Quasaren und Seyfert-Galaxien ist eines der Hauptunterscheidungsmerkmale von den normalen Galaxien. Über einen Frequenzbereich von $\nu \approx 10^9 - 10^{18}$ Hz lassen sich AGN beobachten. Also vom Radiobereich bis zu sehr hohen Energien Edes Röntgenbereichs (\approx keV), und sogar im Gammabereich (\approx GeV) ist noch Strahlung mit der heutigen modernen Technik nachweisbar und im Detail studierbar. Die Energie E eines Photons entspricht einer Wellenlänge λ oder Frequenz ν :

$$E = h \cdot \nu = \frac{h \cdot c}{\lambda} \tag{2.5}$$

Abbildung 2.3: Die spektrale Energieverteilung (SED) von ,radiolauten' (kurz gestrichelt) und ,radioleisen' (lang gestrichelt) Quasaren, nach Elvis et al. (1994). Die mittlere spektrale Energieverteilung alle Quasare von Elvis et al. (1994) ist hier in rot eingezeichnet. Zum weiteren Vergleich ist noch die spektrale Energieverteilung einer normalen Galaxie (Klassifikationstyp Sbc, blaue Linie) dargestellt (ebenfalls Elvis et al. 1994).

$$\nu = 2.41801 \cdot 10^{17} \text{Hz} \cdot E \text{ (in keV)}$$
(2.6)

Nach Formel 2.6 kann somit die Frequenz ν bei gegebener Energie E berechnet werden. Dabei ist die Konstante c die Vakuumgeschwindigkeit des Lichtes und h das Plancksche Wirkungsquantum. In Abbildung 2.3 ist die spektrale Energieverteilung für ,radiolaute' und ,radioleise' Quasare, sowie eine gemittelte spektrale Energieverteilung über alle Quasare von Elvis et al. (1994), dargestellt. Dazu wurde als Beispiel noch die SED für eine normale Spiralgalaxie, mit dem nach Hubble eingeführten Klassifikationstyps Sbc, eingezeichnet, deren Lage bezüglich der Ordinate willkürlich ist. Es fällt schnell ins Auge, dass die normale Galaxie einen wesentlich geringeren Frequenzbereich überdeckt, als es bei den Quasare der Fall ist. Die Darstellung der SED entstand aus den Daten von Elvis et al. (1994) und wird im Laufe der Diplomarbeit als Referenz Verwendung finden. Hierzu ist noch zu sagen, dass die dazu verwendeten Originaltabellen für die SED nur Informationen über die Frequenz $\log \nu$ und die Leuchtkraft $\log \nu L_{\nu}$ enthalten. Eine Umrechnung der Leuchtkraft L_{ν} in einen Fluss F_{ν} $(F_{\nu} = L_{\nu}/4\pi D_{l}^{2})$ nehme ich in diesem Fall mit der Annahme vor, dass die Leuchtkraftentfernung D_l eine Konstante ist. Da es sich bei den verwendeten Informationen um eine gemittelte SED handelt, ist eine korrekte Bestimmung der Leuchtkraftentfernung D_l nicht möglich. Es kann damit nur genähert gelten: $\log F_{\nu} \approx \log L_{\nu} - 57.63$, wobei die Einheiten bei $[F_{\nu}] = \operatorname{erg s}^{-1} \operatorname{cm}^{-2} \operatorname{Hz}^{-1}$ und $[L_{\nu}] = \text{erg s}^{-1} \text{ Hz}^{-1} \text{ sind.}$

Um den Verlauf der SED über den großen Frequenzbereich mathematisch beschreiben zu können, verwendet man in erster Ordnung ein Potenzgesetz:

$$F_{\nu} = C \cdot \nu^{-\alpha}$$

$$\log F_{\nu} = \log C - \alpha \log \nu$$
(2.7)

Es ist hier zu beachten, wie das Vorzeichen des Spektralindex α definiert ist. Häufig werden unterschiedliche Notationen verwendet, so kann auch ν^{α} auftauchen (z.B. Richstone & Schmidt 1980) und das Vorzeichen steckt dann im Wert des Spektralindexes. Ich werde die Notation von Gleichung 2.7 verwenden, somit das Vorzeichen nicht mit in den Spektralindex aufnehmen.

In der Abbildung 2.3 wurde nicht $\log F_{\nu}$ gegen ν aufgetragen, sondern stattdessen $\log \nu F_{\nu} \sim (-\alpha + 1) \log \nu$ gegen ν verwendet. Diese Art der Darstellung hat einige Vorteile. Für einen Spektralindex $\alpha \approx 0$ würde sich damit eine Steigung von 1 ergeben, dass heißt der Fluss steigt proportional mit der Frequenz. Für den Fall $\alpha \approx 1$ ist die Steigung 0 und der Fluss bleibt über die Frequenz konstant, er verläuft horizontal in der Darstellung. Der Fluss wird nicht immer pro Frequenzintervall gemessen. Besonders im optischen und ultravioletten Bereich wird pro Wellenlängenintervall gemessen. Dennoch ist der gemessene integrale Fluss in einem Bandpass der gleiche, unabhängig davon, ob pro Frequenz oder Wellenlänge gemessen wurde, da $F_{\nu}d\nu = F_{\lambda}d\lambda$ gilt. Die Umrechnung der Flüsse erfolgt somit nach:

$$F_{\nu} = F_{\lambda} \left| \frac{d\lambda}{d\nu} \right| = \frac{\lambda^2 F_{\lambda}}{c}$$
(2.8)

und die Gleichung 2.7 kann für den Fluss, gemessen pro Wellenlängenintervall, geschrieben werden als $F_{\lambda} = \tilde{C}\lambda^{\alpha-2}$. Die Flüsse in Gleichung 2.8 besitzen dann die folgendenen Einheiten: $[F_{\nu}] = \text{erg s}^{-1} \text{ cm}^{-2} \text{ Hz}^{-1}$ und $[F_{\lambda}] = \text{erg s}^{-1} \text{ cm}^{-2} \text{Å}^{-1}$. Diese einfache Beschreibung mit einem Potenzgesetz reicht nur in erster Näherung aus, um die SED vollständig zu charakterisieren. Dass das Kontinuum nur nichtthermischen Ursprungs sein kann, ergibt sich aus der Emission von Strahlung über einen großen beobachtbaren Frequenzbereich, was nur durch ein Potenzgesetz ausreichend beschrieben werden kann. Bei einem thermischen Ursprung, wie es bei der der Schwarzkörperstrahlung der Fall ist, gibt es eine deutliche Abnahme des Flusses der Kirchhoff-Planck-Funktion im Wienschen Grenzfall.

Es gibt in der SED einige Merkmale die vom einfachen Potenzgesetz nicht mehr erfasst werden. Die SED ist also vielschichtiger aufgebaut und wird daher besser durch ein Mehrkomponentenkontinuum beschreiben (Peterson 1997). In unterschiedlichen Bereichen des Kontinuums sorgen verschiedene physikalische Prozesse für das beobachtete Gesamtspektrum. Ein charakteristisches Merkmal ist der "big blue bump", kurz BBB. Ein Großteil der Leuchtkraft des AGN wird in einem breiten Bereich des Spektrums ab Wellenlängen $\lambda \leq 4000$ Å bis in den Röntgenbereich emittiert. Die optische Beobachtungsgrenze bei $\lambda = 912$ Å verhindert es den gesamten BBB nachzuweisen. Im Röntgenbereich steigt das Spektrum mit abnehmender Photonenenergie stark an, und es gibt einen "Überschuss" an weicher Röntgenstrahlung. Dieser "Überschuss" ist der hochenergetische Anteil, des im Optischen beginnenden BBB. Der BBB besitzt einen thermischen Ursprung und entsteht durch die aufgeheizte Akkretionsscheibe. Die notwendigen Modelle für die Beschreibung des BBB werden bei Mathews & Ferland (1987); Zheng et al. (1997); Koratkar & Blaes (1999) erläutert.

Sehr viele AGN besitzen im Bereich von $\approx 1 \ \mu$ m ein weiteres charakteristisches Merkmal. In diesem Bereich gibt es ein Minimum in der SED. Dieses Minimum ergibt sich aus dem weiteren Abfall des thermischen Spektrum des BBB und dem beginnenden Anstieg der SED aufgrund einer kühleren thermischen Komponente. Diese Komponente ist als "infrared bump" bekannt und wird der thermischen Emission warmer Staubwolken ($T \leq 2000$ K, Rieke & Lebofsky 1981; Barvainis 1987) zugeschrieben. Dieser "infrared bump" erstreckt sich im Spektrum bis in den Submillimeterbereich. In Richtung größerer Wellenlängen ändert sich der Verlauf der SED rapide. An dieser Submillimeterkante fällt der Fluss bis in den Radiobereich um 2 bis 6 Zehnerpotenzen ab. Dieser Abfall teilt die AGN in "radiolaut" (Abfall um 10^2) und "radioleise" (Abfall um 10^6) ein. Wie schon bei den Radiogalaxien erwähnt, definierte Kellermann et al. (1989) dazu ein Kriterium für die Trennung.

Es wurden schon mehrfach Aspekte des Röntgenbereichs der SED angesprochen. Das Verständnis der Röntgenstrahlung der AGN ist von großer Bedeutung für den Aufbau und die verknüpften physikalischen Prozesse der AGN und somit also auch für das "unified scheme". Der Röntgenbereich wird häufig in verschiedene Bereiche eingeteilt. So spricht man bei Energien von 0.01 - 1 keV vom "soft X-ray" weichen Röntgenbereich, Energien von 1 - 5 keV vom "mid X-ray" mittleren Röntgenbereich und bei 5 - 100 keV vom "hard X-ray" harten Röntgenbereich. Bei der Röntgenastronomie werden die Spektren der SED häufig nicht in Fluss pro Frequenz dargestellt, sondern als Photonen pro Photonenenergie in Kiloelektronenvolt (keV). Daher ergibt sich im Röntgenbereich ein andere Schreibform für des Potenzgesetz (siehe Gleichung 2.7):

$$P_E \sim E^{-\Gamma} \sim \nu^{-\Gamma} \tag{2.9}$$

Die Photonenanzahl $[P_E]$ = Photonen s⁻¹ keV⁻¹ kommt der realen Messgröße in den Detektoren sehr nahe, da diese Messgröße in Ereignisanzahl pro Sekunde gemessen wird. Eine Umrechnung in einen Fluss ergibt sich dann durch:

$$F_{\nu} \sim P_E h \nu \tag{2.10}$$

$$F_{\nu} \sim \nu^{-\Gamma+1} \sim \nu^{-\alpha} \tag{2.11}$$

Die Größe Γ wird als Photonindex bezeichnet und ist mit dem Spektralindex α durch $\Gamma = \alpha + 1$ verknüpft. Ein typischer mittlerer Wert bei AGN für Γ ist 2.5 (Zickgraf et al. 2003). Von besonderem Interesse ist die fluoreszierende FeK α -Linie bei 6.4 keV. Sie ist die stärkste Linie im Spektrum mit einer Breite $\sim 100 - 150$ eV (Nandra & Pounds 1994). Die notwendigen Anregungsmechanismen deuten auf ein starkes Gravitationsfeld hin. Ferner gibt das genaue Profil guten Aufschluss auf die Geschwindigkeitsverteilung im Emissionsgebiet (Madejski 1998).

Ein wichtiger Aspekt der SED wurde bisher noch nicht ausreichend angesprochen. Die beobachtbaren Emissionen des AGN in den unterschiedlichen Frequenzbereichen können sich mit der Zeit ändern. Schon bei den ersten Untersuchungen einer ausreichend großen Anzahl von Quasaren hat Schmidt (1969) einen zeitlich variablen Kontinuumsfluss im Optischen festgestellt und dies als eine wesentliche Eigenschaft der Quasare erkannt. Die Variabilität kam zwar schon bei den BL Lacs und OVVs zur Sprache, jedoch nicht im Gesamtbild des "unified schemes". Der Prozess der Akkretion von Materie wird sich nicht als Prozess gleichmäßiger Annäherung von Materie an das BH ergeben. Vielmehr müssen Störungen und Diskontinuitäten auftreten um den intrinsischen Drehimpuls der Materie nach außen transportieren zu können. Diese Störungen führen zu einer Veränderung des emittierten Kontinuums und damit zur beobachteten Variabilität. Eine Änderung des Kontinuumflusses im Röntgenbereich (typische Zeiten von Stunden) ist mit einer Kontinuumsflussänderung im Optischen und UV (typische Zeiten von Tagen) korreliert (Edelson et al. 1996; Koratkar & Blaes 1999). Der Effekt der Variabilität des Kontinuums wird für das Reverberation Mapping gebraucht, da Veränderungen im Kontinuum zeitverzögert in den angeregten Emissionlinien der BLR zu beobachten sind. Die Zeitskalen der Variabilität im Infrarotbereich liegen schon deutlich höher. Beim bestuntersuchten Fall Fairall 9 (Clavel et al. 1989) werden Veränderungen im Infrarotbereich ≈ 400 Tage nach entsprechenden Veränderungen im optischen Kontinuum registriert. Dies entspricht 400 Lichttagen oder $\approx 10^{18}$ cm. Im Radiobereich sind die Zeiten der Änderungen des Flusses der AGN nicht mit den Zeiten in den anderen Frequenzbereichen zu vergleichen, da sie wesentlich größer sind.

Mithilfe der Vorbetrachtungen zu den Eigenschaften der AGN werden in Kapitel 5 erste Bezüge zu den Informationen, Flüsse und Leuchtkräfte, der einzelnen Frequenzbänder des AGN-Datensatzes hergestellt und in Kapitel 6 dann die berechneten spektralen Energieverteilungen mit der Theorie und der Arbeit von Elvis et al. (1994) verglichen.

3. Wie viele AGN sind noch unentdeckt?

In den späten 50er Jahren begannen die ersten Radiohimmelsdurchmusterungen, wie der 3C (Edge et al. 1959) und 3CR (Bennett 1962). Die entdeckten Radioquellen entsprachen im optischen Wellenlängenbereich häufig aufgelösten Galaxien, jedoch wurden bei den Radiopositionen manchmal auch "Sterne" entdeckt (Matthews & Sandage 1963). Spektroskopische Untersuchungen zeigten, damals unverstandene, Emissionslinien, wie wir sie heute von den AGN kennen. In den weiteren Jahren sind in der extragalaktischen Forschung immer mehr AGN entdeckt worden. Durch den technischen Fortschritt und die steigende Nachweisempfindlichkeit der Detektoren werden zunehmend genauere Untersuchungen der vorhandenen AGN möglich, dies gilt besonders für die sehr lichtschwachen AGN. Die vergangenen Himmelsdurchmusterungen entdeckten stets viele neue AGN und erhöhten damit die Anzahl der bekannten AGN. Jedoch nicht alle Himmelsdurchmusterungen haben den gesamten Himmel abgedeckt. Es wurden zumeist nur Teilflächen durchsucht, bedingt durch z.B. Standort, Programmlaufzeit, die Zielsetzung und eine Begrenzung in der Helligkeit.

Die Anzahl und Flächenverteilung der zum jetzigen Zeitpunkt bekannten AGN ist durch den aktuellen "Catalogue of Quasars and Active Nuclei" von Véron-Cetty & Véron (2001) gegeben. Dieser Katalog entstand jedoch als inhomogene Sammlung von veröffentlichen AGN. Es ist zu erwarten, dass dieser Katalog nicht vollständig sein wird. Wieviele AGN sind also am Himmel, exklusive des Milchstraßenbandes, bis zu einer bestimmten Grenzhelligkeit noch unentdeckt geblieben? Diese Frage soll mit Hilfe von vollständigen Himmelsdurchmusterungen beantwortet werden, denn mit ihnen ist eine Abschätzung dieses fehlenden Anteils möglich. Die verwendeten Himmelsdurchmusterungen wurden zwar nur über Teilbereiche des Himmels durchgeführt, eignen sich aber dennoch zur Berechnung einer erwarteten Flächendichte von AGN, da sie in ihrem Helligkeitsbereich vollständig sind. Der fehlende Anteil von AGN kann eventuell durch gegenwärtige oder zukünftige Himmelsdurchmusterungen entdeckt werden.

Die Flächendichte wird im optischen Bereich berechnet. Sie kann somit auch nur für diesen Bereich eine erwartete Anzahl von fehlenden AGN bestimmen. Auf andere

Tabelle 3.1: Übersicht wichtiger Eckdaten der verwendeten Kataloge, wobei m die scheinbare Helligkeit, z die Rotverschiebung, N_{AGN} die Anzahl der enthaltenen AGN und A_{eff} die effektive Fläche ist. Für die Helligkeiten beim Véron-Katalog sind ausführlichere Betrachtungen nötig, siehe dazu Abschnitt 3.2.3, und daher die Wahl von m im Helligkeitsintervall.

Katalog:	B_J	z	$N_{\rm AGN}$	$A_{\rm eff}$
HES	$13 \lesssim B_J \lesssim 17.5$	0 < z < 3.2	415	$\approx 3100 \ \mathrm{deg}^2$
LBQS	$16 \le B_J \le 18.5$	$0.2 \leq z \leq 3.2$	1055	$453.8 \ \mathrm{deg}^2$
$2\mathrm{dF}$	$18.25 \le B_J \le 20.85$	0 < z < 3.2	10836	$289.6 \ \mathrm{deg}^2$
10. Véron-Catalog	$9.25 \lesssim m \lesssim 24.40$	$0 \le z \lesssim 5.8$	29511	$> 20626 \mathrm{~deg}^2$

Frequenzbereichen kann damit nicht geschlossen werden, obwohl die AGN aufgrund ihrer spektralen Eigenschaften eine Entdeckung in anderen Frequenzbereichen ermöglichen würden.

3.1 Flächendichte von AGN

Durch Bestimmung der Flächendichte F(m) kann man die Vollständigkeit des Véron-Katalogs (Véron-Cetty & Véron 2001) überprüfen. In diesem Kapitel werde ich diese Methode der Flächendichtenberechnung benutzen. Eine andere Möglichkeit wäre die Berechnung der Leuchtkraftfunktion der AGN (Schechter 1976), um die Vollständigkeit des Véron-Katalogs zu testen, die ich jedoch nicht anwende.

Zum gegenwärtigen Zeitpunkt eignen sich drei Himmelsdurchmusterungen für die Klärung der Frage bezüglich der Vollständigkeit. Die notwendige Anforderung der Vollständigkeit wird vom Hamburg/ESO Survey for Bright QSOs (Wisotzki et al. 2000), dem Large Bright Quasar Survey (Hewett et al. 1995) und dem 2dF QSO Redshift Survey (Boyle et al. 2000) erfüllt. Diese Himmelsdurchmusterungen, an teilweise verschiedenen Stellen am Himmel, besitzen unterschiedliche Selektionskriterien und Grenzhelligkeiten. Eine Zusammenstellung wichtiger Eckdaten ist in der Tabelle 3.1 zu finden. Die scheinbare Helligkeit m entspricht bei den drei vollständigen Himmelsdurchmusterungen dem B_J -Band. Das B_J -Band ist definiert als die Empfindlichkeitsfunktion auf die Kodak IIIa-J Emulsion kombiniert mit dem Schott GG395 Filter (siehe dazu Wisotzki et al. 2000; Hewett et al. 1995). Die in der Tabelle angegebene effektive Fläche A_{eff} ist als diejenige Fläche zu verstehen, die aus der nominellen Durchmusterungsfläche abzüglich nicht verwendbarer Flächen hervorgeht. Die drei vollständigen Himmelsdurchmusterungen überdecken bei der scheinbaren Helligkeit m einen Bereich von fast 8 Größenklassen. Die Flächendichte F(m) kann somit über einen mit der heutigen Instrumententechnik leicht beobachtbaren Teil bestimmt werden.

Mit Hilfe dieser drei vollständigen Himmelsdurchmusterungen lässt sich somit eine differenzielle Flächendichte F(m) der AGN in Abhängigkeit von der scheinbaren Helligkeit m berechnen, deren Einheit pro Flächeneinheit (deg⁻²) und Helligkeitsbereich (mag⁻¹) ist. Diese modellierte Flächendichte kann dann mit anderen Katalogen

oder Himmelsdurchmusterungen verglichen werden. Die Flächendichte erlaubt dann Rückschlüsse auf die Vollständigkeit des Véron-Cetty und Véron-Katalogs ziehen zu können, also wieviele AGN bis zu einer bestimmten Grenzhelligkeit noch unentdeckt sind.

3.1.1 Die vollständigen AGN-Durchmusterungen

Der Hamburg/ESO Survey (HES) ist zu 99% spektroskopisch vollständig und überdeckt für Helligkeiten $B_J < 16.3$ eine Fläche von ca. 3100 deg² am Südhimmel. Bereiche in der Nähe des Milchstraßenbandes sind dabei ausgelassen worden, aufgrund der dort stark zunehmenden Absorption durch interstellaren Wasserstoff und Staub. Der Katalog enthält 415 aktive Galaxien. Desweiteren wurden keine Hinweise auf Auswahleffekte einer rotverschiebungsabhängigen Änderung in der Vollständigkeit gefunden. Das Programm startete im Jahr 1990 und basiert auf digitalisierten Objektivprismen-Photoplatten, die am ESO Schmidt Teleskop gewonnen wurden. (Wisotzki et al. 2000)

Der Large Bright Quasar Survey (LBQS) ist 1986 mit der Zielstellung begonnen worden, einen homogen Datensatz von aktiven Galaxien mit Helligkeiten $16 \leq B_J \lesssim 18.5$ zu identifizieren. Die Suche nach aktiven Galaxien erstreckte sich über eine Himmelsfläche von $\approx 605 \text{ deg}^2$. Die aktiven Galaxien wurden mit Hilfe von Objektivprismen-Photoplatten und Direkt-Platten bestimmt. Es sind 1055 aktive Galaxien in diesem Survey enthalten. Die Arbeiten an diesem Katalog wurden 1989 im wesentlichen abschlossen. (Hewett et al. 1995)

Der 2dF QSO Redshift Survey (2dF) wurde in einem Helligkeitsbereich durchgeführt, der optisch schwächere aktive Galaxien enthält, als dies bei HES und LBQS der Fall ist. Ziel dieses Programms ist es für einen homogenen Datensatz genaue Rotverschiebungen für ≈ 25000 optisch selektierte Quasare mit Helligkeiten $B_J < 20.85$ und Rotverschiebung z < 3 zu messen. Der Katalog entstand mit dem 2°-Feld Instrument des Anglo-Australischen Teleskops in den Jahren 1996 bis 2002. (Croom et al. 2001)

Die Daten für den HES- und LBQS-Katalog standen unabhängig vom Véron-Katalog zur Verfügung. Die Helligkeiten für den 2dF-Katalog sind dem Véron-Katalog entnommen. Es ist eine Umrechnung der gemessenen B_J -Helligkeiten nötig, um Vergleiche mit anderen Katalogen zu ermöglichen, da diese Helligkeiten basierend auf dem Johnson-UBV-System (Johnson & Morgan 1953) verwenden. Nach Blair & Gilmore (1982) erfolgt eine Umrechnung der Helligkeiten durch:

$$B_J = B - 0.28(B - V) \tag{3.1}$$

Bei Norberg et al. (2002) wird ebenfalls eine, gegenüber Blair & Gilmore (1982), leicht abweichende Umrechnung der Helligkeiten angegeben ($B_J = B - (0.267 \pm 0.019)(B - V)$). Mit einem mittleren Farbindex von B - V = 0.4 (Véron-Cetty & Véron 2001) ergibt sich somit für die Umrechnung $B = B_J + 0.112$.

Für die Bestimmung der Flächendichte der AGN in Abhängigkeit von der scheinbaren Helligkeit beziehe ich mich nachfolgend nur auf die Johnson-*B*-Helligkeiten. Die drei verwendeten vollständigen Himmelsdurchmusterungen HES, LBQS und 2dF sind für weitere Berechnungen namentlich als HLC zusammengefasst (C, da der Erstautor der 2dF-Referenz Croom heißt).

3.1.2 Bestimmung der Flächendichte

Der störende Einfluss der Absorption durch interstellaren Wasserstoff wird in Himmelsbereichen mit einer galaktischen Breite $|b| \ge 30^{\circ}$ ausreichend gering sein (Dickey & Lockman 1990; Schlegel et al. 1998). Bei Dickey & Lockman (1990) wurde die Säulendichte des neutralen Wasserstoffs (N_H) in Abhängigkeit von der galaktischen Breite *b* untersucht. Gemäß Abbildung 5 in der Arbeit wird die Wahl von $|b| \ge 30^{\circ}$ unterstützt, da ab hier die Säulendichte $N_H < 2 \cdot 10^{21}$ cm⁻² ist, was einen eher vernachlässigbaren Einfluss auf die beobachteten spektralen Eigenschaften der AGN hat. Die weitere statistische Auswertung betrachtet daher nur noch diesen Bereich. Alle Helligkeiten des HLC sind als Johnson-*B*-Helligkeiten gegeben. Es müssen jedoch Korrekturen für diese angegebenen Helligkeiten vom LBQS- und 2dF-Katalog vorgenommen werden. Im LBQS-Katalog sind alle Objekthelligkeiten um 0.1 mag verschoben worden ($B_{korr} = B - 0.1$), um einen Einfluss der galaktischen Extinktion zu korrigieren (Wisotzki et al. 2000), der von Hewett et al. (1995) nicht berücksichtigt wurde.

Nach Peterson (1997 Kap. 10) gilt folgender Zusammenhang zwischen Objektanzahl N und der scheinbaren Helligkeit m:

$$\log N(m) \sim 0.6 \, m \tag{3.2}$$

Die Steigung des "log $N - \log S$ "-Tests mit 0.6 gilt unter der Annahme einer konstanten Raumdichte von AGN und einer euklidischen Geometrie des Raumes. Entwicklungseffekte bei großen Rotverschiebungen, sowie Verteilungsfluktuationen in der Raumdichte der AGN werden dadurch nicht berücksichtigt. Somit erwarte ich einen stetigen linearen Zusammenhang von AGN-Anzahl N und scheinbarer Helligkeit m. Diese sollte beim HLC vom Katalog unabhängig gelten, und ein stetiger Übergang von HES zu LBQS ist auch vorhanden (Abbildung 3.1). Für den Übergang von LBQS zu 2dF hingegen gilt dies erstmal nicht. Durch eine Verschiebung von 0.2 mag bei der verwendeten Helligkeit B wird die Unstetigkeit zwischen LBQS und 2dF aufgehoben ($B_{korr} = B - 0.2$).

Nach diesen Anderungen kann die statistische Analyse des HLC gemäß Formel 3.3 durchgeführt und die Flächendichte F(B), als Funktion der scheinbaren Helligkeit B berechnet werden.

$$F(B) = \frac{N(B)}{A_{\text{eff}} \Delta B}$$
(3.3)

Dabei ist N(B) die Anzahl der AGN mit $B - \frac{\Delta B}{2} \leq B < B + \frac{\Delta B}{2}$ geteilt durch die Breite des gewählten Helligkeitsintervalls ΔB . Zur Bestimmung der Flächendichte verwende ich ein ΔB =0.25 für den HLC-Katalog. $A_{\rm eff}$ ist, wie schon in Kapitel 3.1 beschrieben, die effektive Fläche aus Tabelle 3.1. Somit ist die Einheit der Flächendichte $[F(B)] = \deg^{-2} \operatorname{mag}^{-1}$. Die effektive Fläche des HES ist nicht über den gesamten Helligkeitsbereich konstant. Es wird für die Berechnung der Flächendichte die effektive Fläche (nach Abbildung 2 bei Wisotzki et al. (2000)) in der Mitte des gewählten Helligkeitsintervalls verwendet. Zu beachten ist, dass im Bereich von $B \approx 16.6$ bis $B \approx 17.4$ die effektive Fläche stark abnimmt, dies folglich auch eine größere Unsicherheit für die bestimmte Flächendichte bedeutet.

3.1.3 AGN-Flächendichte F(B) für $14.25 \lesssim B \lesssim 21$

Das Ergebnis der Flächenhelligkeit F(B) der drei vollständigen Himmelsdurchmusterungen, also des HLC, wird in Tabelle 3.2 angegeben. Die Spalte K bezeichnet

Tabelle 3.2: Häufigkeitsverteilung N der Objekte mit galaktischer Breite $|b| \ge 30^{\circ}$ und der berechneten Flächendichte F(B); Spalte B einhält die Helligkeit in der Mitte des Helligkeitsintervalls, Spalte N gibt die Anzahl der AGN an und Spalte K bezeichnet den Katalog: H - HES, L - LBQS, C - 2dF

В	N	F(B)	Κ	N	F(B)	Κ	N	F(B)	Κ
14.25	2	0.00216	Η						
14.50	0	0.00000	Η						
14.75	6	0.00653	Η						
15.00	4	0.00438	Η						
15.25	$\overline{7}$	0.00774	Η						
15.50	13	0.01457	Η						
15.75	13	0.01477	Η						
16.00	23	0.02680	Η						
16.25	42	0.05092	Η	2	0.01763	\mathbf{L}			
16.50	58	0.07779	Η	3	0.02644	\mathbf{L}			
16.75	59	0.09366	Η	11	0.09696	\mathbf{L}			
17.00	88	0.21165	Η	13	0.11459	\mathbf{L}			
17.25	61	0.27519	Η	31	0.27325	\mathbf{L}			
17.50	29	0.51492	Η	65	0.57294	\mathbf{L}	2	0.02762	\mathbf{C}
17.75	2	0.25011	Η	118	1.04011	\mathbf{L}	4	0.05525	\mathbf{C}
18.00				144	1.26928	\mathbf{L}	41	0.56630	\mathbf{C}
18.25				229	2.01851	\mathbf{L}	163	2.25138	\mathbf{C}
18.50				298	2.62671	\mathbf{L}	262	3.61878	\mathbf{C}
18.75				140	1.23402	\mathbf{L}	438	6.04972	\mathbf{C}
19.00							677	9.35083	\mathbf{C}
19.25							874	12.0718	\mathbf{C}
19.50							1221	16.8646	\mathbf{C}
19.75							1393	19.2403	\mathbf{C}
20.00							1746	24.1160	\mathbf{C}
20.25							1875	25.8978	\mathbf{C}
20.50							2023	27.9420	\mathbf{C}
20.75							115	1.58840	\mathbf{C}
21.00							2	0.02762	\mathbf{C}

den Katalog und N die Anzahl der AGN pro Helligkeitsintervall, in dessen Mitte die Helligkeit B ist. Besonders an den Grenzhelligkeiten der Himmelsdurchmusterungen geht die Anzahl der gefundenen AGN stark zurück. Dies führt zu entsprechend großen Poissonfehlern $(s_{F(B)})$ bei der bestimmten Flächendichte F(B):

$$s_{F(B)} = \frac{\sqrt{N}}{A_{\text{eff}} \Delta B} \tag{3.4}$$

Eine grafische Darstellung der berechneten Flächendichten F(B) aus Tabelle 3.2, in Abhängigkeit von der scheinbaren Helligkeit B, ist in Abbildung 3.1 zu finden. Die verwendeten Fehlerbalken entsprechen nur dem ermittelten statistischen Fehler dar. Der systematische Fehler wird für die Flächendichten mit einer hohen Anzahl von Objekten mit Sicherheit größer sein. Für den Bereich 16 < B < 18 kann der systematischen Fehler mit etwas 25% - 35% abgeschätzt werden. Es lässt sich er-

Abbildung 3.1: Die Flächendichte F(B) des HLC-Katalogs, bestimmt aus den drei vollständigen Himmelsdurchmusterungen HES, LBQS und 2dF. Bei der Darstellung aller Datenpunkte fällt schnell auf, dass die Kataloge an ihren Helligkeitsgrenzen unvollständig werden, und die Datenpunkte nicht mehr dem linearen Verlauf folgen.

kennen, dass der HLC in der logarithmischen Darstellung, im Bereich von $B \approx 14$ bis $B \approx 19$ einen linearen Verlauf zeigt. Dieser lineare Verlauf entspricht den theoretischen Vorhersagen des "log $N - \log S$ "-Tests.

Für eine Geradenanpassung des linearen Verlaufs, nach Formel 3.2, werden die Datenpunkte des HLC zunächst einmal bereinigt. Die Berechnung der Flächendichte F(B) basiert an den Grenzen der Helligkeitsbereiche nur auf wenigen AGN pro Helligkeitsintervall. Für diese Bereiche werden die systematischen Fehler sehr groß sein. Es kommt hinzu, dass die Poissonfehler bei kleinen Zahlen ebenfalls sehr groß werden. Somit ist keine zuverlässige Berechnung von F(B) in diesen Bereichen möglich und daher werden die betroffenen Datenpunkte bei der Geradenanpassung nicht berücksichtigt.

Daher werden beim HES-Katalog alle berechneten Flächendichten zwischen 15 < B < 17.75 und mit einer Objektanzahl $N \ge 5$, beim LBQS-Katalog zwischen 15.9 < B < 18.5 und $N \ge 5$ und beim 2dF-Katalog zwischen 17.75 < B < 20.75 und $N \ge 5$ ausgewählt. Für die Geradenanpassung gilt der einfache mathematische Zusammenhang:

$$\log F(B) = a_0 + a_1 B \tag{3.5}$$

Daraus ergaben sich folgende Werte für den angepassten linearen Bereich. Zwischen B = 15 und B = 19.2 beträgt der Achsenabschnitt $a_0 = -14.3 \pm 0.5$ und die Steigung der Geraden $a_1 = 0.81 \pm 0.02$. In Abbildung 3.2 ist der bereinigte HLC-Katalog und die angepasste Gerade dargestellt. Es ist ersichtlich, dass die Steigung der angepassten Gerade nicht der in Gleichung 3.2 vorhergesagten Steigung entspricht. Ist die Steigung größer als 0.6, so kann dies ein Ansteigen der Raumdichte mit zunehmenden Abstand vom Beobachter bedeuten. Da sich aber der Verlauf des HLC ab etwa $B \approx 19.2$ nicht mehr linear fortsetzten lässt, kann die vereinfachte Annahme der konstanten oder ansteigenden Raumdichte ebenso nicht mehr richtig sein.

Abbildung 3.2: Die Flächendichte F(B) für den bereinigten HLC-Katalogs, bestimmt aus HES, LBQS und 2dF. Durch die Wahl unterschiedlicher Symbole sind die Datenpunkte leichter zu unterscheiden.

In diesem Bereich sind nur noch Datenpunkte des 2dF-Katalogs enthalten. Croom et al. (2001) berechneten die Leuchtkraftfunktion der AGN für ihren Katalog. Im Rahmen ihrer verwendeten Modelle, wird die nichtlineare Verlauf der Flächendichte F(B) im Helligkeitsbereich 19 < B < 21 bestätigt. Eine weitergehende Studie dieser Abweichungen ist bei Norberg et al. (2002) nachzulesen.

3.2 Die Vollständigkeit des Véron-Katalog

Die bisher betrachteten drei vollständigen Himmelsdurchmusterungen überdecken nur Teilbereiche des Himmels. Für den gesamten Himmel gibt es bis zum jetzigen Zeitpunkt keine vollständige Durchmusterung, die tiefer als $B \approx 16.5$ reicht. Den aktuellen Stand bezüglich der Anzahl der bekannten aktiven Galaxienkerne am Himmel gibt die 10. Version des "Catalogue of Quasars and Active Nuclei" von M.-P. Véron-Cetty und P. Véron aus dem Jahr 2001 wieder. Dieser Katalog wird in diesem Abschnitt mit den drei vollständigen Himmelsdurchmusterungen (HLC), in Hinblick auf die Flächendichte F(B) und seine Vollständigkeit, verglichen.

3.2.1 Beschreibung des Katalogs

Dieser Katalog entstand erstmals 1971 (de Veny et al. 1971) als eine Sammlung von Quasaren mit bekannten und veröffentlichten Rotverschiebungen. Im Laufe der Jahre stieg die Anzahl der Objekte im Katalog kontinuierlich an. Mit der ersten Veröffentlichung des "2dF Quasar Catalogue" (Croom et al. 2001) wurde die Anzahl der Objekte fast verdoppelt und bekam somit eine neue Qualität. Der Véron-Katalog besteht aus 5 Tabellen, wobei Tabelle 1 Quasare mit absoluter Helligkeit $M_B \geq 23$, Tabelle 2 BL Lac Objekte und BL Lac Kandidaten, Tabelle 3 Seyfert-Galaxien und LINERs, Tabelle 4 Sterne oder normale Galaxien, die ehemals als Quasar, BL Lac

Abbildung 3.3: Verteilung der AGN des Véron-Katalogs am Himmel, mit galaktischer Breite $|b| > 30^{\circ}$.

oder Seyfert-Galaxie klassifiziert wurden und Tabelle 5 Gravitationslinsen und Galaxienpaare, enthält. Mit weiteren Veröffentlichungen vom "2dF Quasar Catalogue" und den Daten vom "Sloan Digital Sky Survey - Early Data Release" (SDSS-EDR) (Stoughton et al. 2002) wird die Objektanzahl weiter anwachsen. Spätestens jedoch mit dem Abschluss der Arbeiten am "Sloan Digital Sky Survey" (SDSS) wird sich die Anzahl der bekannten AGN dramatisch erhöhen.

3.2.2 Datenselektierung

Für einen Vergleich mit dem HLC-Katalog müssen die Daten des Véron-Katalogs erst einmal aufbereitet werden. Es gelten die gleichen Betrachtungen über die Extinktion bei kleinen galaktischen Breiten wie beim HLC. Daher wird auch beim Véron-Katalog nur der Himmel mit galaktischer Breite $|b| > 30^{\circ}$ für die Analyse verwendet. Die betrachtete Himmelsfläche beträgt somit 20626 deg². Die Verteilung der Objekte aus dem Katalog von Véron-Cetty & Véron am Himmel ist in Abbildung 3.3 zu sehen. In der Abbildung sind deutlich einige Strukturen in der räumlichen Verteilung der AGN zu erkennen. Durch einzelne intensive Himmelsdurchmusterungen über kleine Flächen entstehen solche Strukturen unterschiedlicher "Dichte", die durch eine hohe Anzahl von AGN hervorgerufen werden. In Abbildung 3.3(a) sind ein Streifen über den gesamten Rektaszensionsbereich bei $\delta \approx 0^{\circ}$ (Becker et al. 2001; Boyle et al. 1990; Chaffee et al. 1991; Schneider et al. 1994; Hewett et al. 1991; Croom et al. 2001) und eine viereckige Fläche (Hewett et al. 1995) bei $\alpha \approx 12^{\text{h}}$ sehr auffällig. Die viereckige Fläche über diesem Rektaszensionsstreifen enthält ein Teil der AGN des LBQS. Desweiteren befindet sich eine dichte Struktur am linken Rand etwa bei $\alpha = 0^{\rm h} - 2^{\rm h}$ und $\delta \approx -30^{\circ}$ bis $\delta \approx -40^{\circ}$ (Croom et al. 2001; Iovino et al. 1996). In dieser Fläche befinden sich einige AGN des 2dF-Katalogs. Durch die Koordinatentransformation erscheint der Streifen über den gesamten Rektaszensionsbereich in der Abbildung 3.3(b) als Bogen. Die dichte Struktur in der rechten unteren Ecke der Abbildung 3.3(b)ist, infolge dieser Koordinatentransformation, gleichzusetzen mit der unteren dichten Struktur am linken Rand von Abbildung3.3(a).

Die von Véron-Cetty & Véron katalogisierten Objekte enthalten Unsicherheiten bei der Objektklassifikation, der Position, der Rotverschiebung und den Helligkeiten,

Abbildung 3.4: Die Flächendichten F(B) von HLC- und Véron-Katalog unterscheiden sich in ihrem Verlauf deutlich. Daraus ist leicht zu erkennen, dass der Véron-Katalog im gesamten Helligkeitsbereich nicht mehr vollständig ist.

die aufgrund der sehr großen Anzahl unterschiedlichster Untersuchungsmethoden der Quellen entsteht. Die Objekteinträge mit einem "*" vor der Rotverschiebung wurden aus Spektren mit geringer Auflösung gewonnen, d.h. diese Katalogeinträge besitzen nicht die gleiche Genauigkeit gegenüber den unmarkierten Objekten, dies kann bis zu einer Falschbestimmung der Rotverschiebung und/oder des Objekttyps führen. Von den 29511 Objekten der Véron-Tabellen 1 und 3 besitzen 2781 Einträge eine geringere Genauigkeit, dass entspricht einem Anteil von $\approx 9\%$, und sie werden daher für die Analyse nicht weiter berücksichtigt.

Die restlichen 26730 Objekte unterteilen sich nochmals in 3 verschiedene Gruppen. Die erste Gruppe sind die als Quasare bezeichneten Objekte aus der Tabelle 1, mit einer Anzahl von 20019 QSOs. Die nächste Gruppe, aus Tabelle 1 und 3 hervorgehend, sind die Seyfert-Galaxien, mit einer Anzahl von 3603 Seyfert-1-Galaxien. Die Klassifikation als Seyfert-1-Galaxie beinhaltet die Typen S1, S1.0, S1.2, S1.5, S1.8, S1.9 und S1n, nach Osterbrock (1977) und Heckman (1980), wie sie von Véron-Cetty & Véron (2001) in ihrem Katalog angegeben sind. Die verbleibende dritte Gruppe von 3111 Objekten setzt sich aus Seyfert-2-Galaxien, Seyfert-Galaxie-Kandidaten, HII-Regionen, hoch polarisierten Quellen und LINERs zusammen. Für den Vergleich mit dem HLC verwende ich nur die ersten beiden Gruppen, Quasare und Seyfert-1-Galaxien. Unter Berücksichtigung einer galaktische Breite $|b| \geq 30^{\circ}$ und Auswahl der ersten beiden Gruppen entspricht dies 22348 AGN. Dies sind somit 75% der gesamten AGN von Véron-Cetty & Véron, die für den Vergleich der Flächendichten F(B) mit dem HLC verwendet werden können.

3.2.3 Flächendichte des Véron-Katalogs

Die Bestimmung der Flächendichte erfolgt auf dem gleichen Weg wie schon beim HLC-Katalog. Um den Einfluss der galaktischen Extinktion möglichst gering zu halten, beschränke ich mich auf galaktischen Breiten $|b| \ge 30^{\circ}$, analog zum Vorgehen

В	N	$\log F(B)$	F(B)
14.00	27	-2.582	0.0026
14.50	44	-2.370	0.0043
15.00	98	-2.022	0.0095
15.50	188	-1.739	0.0182
16.00	302	-1.533	0.0293
16.50	467	-1.344	0.0453
17.00	796	-1.112	0.0772
17.50	1088	-0.977	0.1055
18.00	1565	-0.819	0.1517
18.50	2052	-0.701	0.1990
19.00	2412	-0.631	0.2339
19.50	3094	-0.523	0.3000
20.00	4007	-0.411	0.3885
20.50	4494	-0.361	0.4358
21.00	1168	-0.946	0.1133
21.50	174	-1.773	0.0169
22.00	89	-2.064	0.0086

Tabelle 3.3: Die Flächendichte F(B) ($[F(B)] = \text{mag}^{-1} \text{ deg}^{-2}$) des Véron-Katalogs, im Intervall $\Delta B = 0.5$ um die scheinbare Helligkeit B sind N AGN enthalten.

bei HLC. Um die Ergebnisse mit den HLC-Daten richtig vergleichen zu können, müssen die im Véron-Katalog angegebenen "V"-Helligkeiten den vorher verwendeten *B*-Helligkeiten entsprechen. Dafür muss für markierte Helligkeitseinträge eine photometrische Umrechnung vorgenommen werden. Wenn im Véron-Katalog, neben der angegebenen "V"-Helligkeit, noch B - V ist gegeben ist, so handelt es sich auch um die V-Helligkeit und eine Umrechnung erfolgte einfach nach B = V + (B - V). Es kann sich auch um R-, I- und O-Helligkeiten handeln, jeweils durch ein R, I oder O vor der Spalte mit den Helligkeiten gekennzeichnet. Bei den O-Helligkeiten kann es sich um Helligkeiten von den "Palomar Sky Survey plates" oder Helligkeiten von den "UK Science Research Council SRC-J Survey plates" handeln, die der APS Datenbank entstammen (Pennington et al. 1993). Außerdem kann es auch um Helligkeiten aus dem "USNO-A2.0 Catalogue" (Monet et al. 1998) oder dem "Cambridge Automated Plate Measuring Machine Catalogue" handeln. Passende Umrechnungen sehen wie folgt aus (Véron-Cetty & Véron 2001):

$$B - O = -(0.27 \pm 0.06)(B - V)$$

 $B - R = 0.57$
 $B - I = 1.1$

Mit den geänderten Helligkeitswerten wurde, gemäß Formel 3.3, die Flächendichte F(B) berechnet. Das Ergebnis der statistischen Auswertung der Häufigkeitsverteilung der aktiven Galaxien innerhalb eines gewählten scheinbaren Helligkeitsbereiches wird in Tabelle 3.3 aufgeführt. Wie schon erwähnt, stammen die Daten des Véron-Katalogs über die aktiven Galaxien aus den unterschiedlichsten Quellen. Die jeweiligen Fehler der Helligkeiten besitzen daher sicherlich eine unterschiedliche Größe. Um

Abbildung 3.5: Aus den Flächendichten F(B) des bereinigten HLC- und Véron-Katalog ergeben sich die noch unbekannten und unentdeckten AGN. In der Grafik ist der Schnittpunkt der beiden Kurven, bei $B \approx 16$, gut zu erkennen.

diese Unsicherheiten zu glätten, verwendete ich einen Helligkeitsintervall $\Delta B = 0.5$ für die Berechnung von F(B).

3.3 Unentdeckte AGN

Für die anfänglich aufgeworfene Frage nach den unentdeckten AGN ist die Differenz der beiden Flächendichten F(B) von grundlegender Bedeutung. Aus Abbildung 3.4 entnimmt man, dass sich die Verläufe des HLC- und Véron-Katalogs bei einer Helligkeit $B \approx 16$ schneiden. Bei abnehmender scheinbarer Helligkeit (B > 16) sind statistisch gesehen nicht mehr alle AGN bekannt und der Verlauf der Datenpunkte von HLC und Véron unterscheiden sich. Hierin offenbart sich die Unvollständigkeit des Véron-Katalogs. Die Differenz der beiden Kurven stellt somit den Anteil der noch unbekannten AGN pro Einheitsfläche und Helligkeitsintervall dar. Die errechneten Werte sind in Tabelle 3.4 aufgelistet. Es sind dort in der Spalte B die Helligkeit, in der Spalte K der entsprechende Katalogdatenpunkt des HLC, anschließend der Logarithmus der Flächendichte und die Flächendichte F(B) des HLC- und Véron-Katalogs und danach die Differenz der Flächendichten angegeben. Die Spalte N gibt die erwartete Anzahl der noch fehlenden AGN pro Helligkeitsintervall an.

$$N(B) = F(B) \cdot A \,\Delta B \tag{3.6}$$

Die in der Tabelle 3.4 angegebene Anzahl N ist für eine Beispielfläche A = 10313 deg und einer Breite des Helligkeitsintervalls $\Delta B = 0.5$ gerechnet worden. Der Fehler s_N zu dieser Anzahl N ergibt sich aus dem Fehler der Flächendichte F(B) des HLC-Katalogs. Die Beispielfläche entspricht einer Fläche am Himmel mit galaktische Breite $b \geq 30^{\circ}$ oder dem gesamten Nordhimmel mit $\delta \geq 0$ und $|b| \geq 30^{\circ}$.

Bis zu einer Helligkeit $B \approx 16$ sind statistisch gesehen alle AGN bereits bekannt. Dies deckt sich mit der Feststellung im einleitenden Abschnitt zu diesem Kapitel. Dies ist

В	Κ	$\log F(B)$		F(B)		Differenz HLC-Véron		
		HLC	Véron	HLC	Véron	$\Delta F(B)$	N	\mathbf{s}_N
15.00	Η	-2.358	-2.022	0.004	0.010	-0.0051	-26	11
15.50	Η	-1.837	-1.739	0.015	0.018	-0.0037	-19	21
16.00	Η	-1.572	-1.533	0.027	0.029	-0.0025	-13	29
16.50	Η	-1.109	-1.344	0.078	0.045	0.0325	168	53
17.00	\mathbf{L}	-0.674	-1.112	0.212	0.077	0.1345	693	116
17.50	\mathbf{L}	-0.242	-0.977	0.573	0.105	0.4674	2410	366
18.00	\mathbf{L}	0.104	-0.819	1.269	0.152	1.1175	5763	545
18.50	\mathbf{C}	0.559	-0.701	3.619	0.199	3.4198	17634	1153
19.00	\mathbf{C}	0.971	-0.631	9.351	0.234	9.1170	47012	1853
19.50	\mathbf{C}	1.227	-0.523	16.865	0.300	16.5646	85415	2489
20.00	\mathbf{C}	1.382	-0.411	24.116	0.389	23.7275	122351	2976
20.50	С	1.446	-0.361	27.942	0.436	27.5062	141836	3203

Tabelle 3.4: Ergebnis des Vergleichs der Flächendichten F(B) des HLC- und Véron-Katalogs. Aus der Differenz der beiden Flächendichten ($\Delta F(B)$) ergibt sich die Anzahl N der fehlenden AGN pro Helligkeitsintervall ΔB , und es wird darin die Unvollständigkeit des Véron-Katalogs offenbart.

auch aus dem Verlauf der beiden Kurven in Abbildung 3.5 zu entnehmen. Unterhalb von $B \approx 15.5$ deutet sich ein Trend an, bei dem die Datenpunkte des Véron-Katalog über denen des HLC liegen. Jedoch ist diese Abweichung noch im Rahmen der Fehler der HLC-Datenpunkte. Die AGN in diesem Helligkeitsbereich besitzen nur eine geringe Rotverschiebung und sind somit schon ausgedehnte Galaxien, die man in Kern und Muttergalaxie trennen kann. Die Helligkeit eines solchen AGN kann durchaus falsch bestimmen sein. Es bleibt offen, welcher Anteil der angegebenen Helligkeit des Véron-Katalogs dem Kern und welcher Anteil der umliegenden Galaxie zuzurechnen ist. Bei den nahezu punktförmigen AGN hoher Rotverschiebung hingegen, wird die gesamte Helligkeit dem Kernbereich zugerechnet. Hier ist eine Trennung recht schwierig oder muss besonders behandelt werden. Es kann für die Bestimmung der Flächenhelligkeit F(B) wichtig werden, ob man eine Trennung in Kern- und Muttergalaxie-Helligkeit vornimmt. Sollte es sich im Helligkeitsbereich $B \lesssim 15$ generell um einer Uberbewertung der Kern- gegenüber der Galaxienhelligkeit handeln, so würde eine Korrektur dazu führen, dass der Verlauf des Véron-Katalogs sich in diesem Bereich mehr dem HLC annähert.

Es ist aus der SED (Kapitel 2.3) bekannt, dass AGN auch Röntgenstrahlung emittieren, somit könnten Himmelsdurchmusterungen in diesen Wellenlängenbereichen die unentdeckten AGN eventuell finden. Die Formeln 3.3 und 3.5 lassen sich zusammenfassen, und es gilt dann für die kummulative Anzahl N(B):

$$\frac{dN(B)}{dB} = 10^{a_0 + a_1 B} \cdot A$$

$$N(B) = \int_{B_{\min}}^{B_{\max}} \frac{10^{a_0 + a_1 B}}{\ln 10 a_1} \cdot A \, dB$$
(3.7)
$$= \left[\frac{10^{a_0+a_1B}}{\ln 10 a_1} \cdot A\right]_{B_{\min}}^{B_{\max}}$$
(3.8)

Unter Verwendung der Regressionswerte aus Abschnitt 3.1.3 für a_0 und a_1 lässt sich die Anzahl der unbekannten AGN in einem beliebigen Helligkeitsbereich (B_{\min} bis B_{\max}) abschätzen. Wobei als Einschränkung eine obere Grenze in der Verwendbarkeit bei etwa B = 19 liegt, da in diesem Bereich keine lineare Korrelation mehr vorliegt.

Der ROSAT All-Sky Survey findet AGN bis etwa zu einer Helligkeit von $B \approx 19$ und einer Rotverschiebung z < 0.5 (Bade et al. 1995). Eine optische Identifizierung der hellen Röntgenquellen aus dem "ROSAT Bright Source Catalogue" (Voges et al. 1999) von Zickgraf et al. (2003) findet nur $N \approx 2300$ AGN. Dies ist jedoch nur ein geringer Teil der erwarteten AGN von $N \approx 65000$. Somit ist die Methode zur Entdeckung von AGN, mit Hilfe ihrer Röntgenstrahlung, zwar hilfreich, aber dennoch nicht ausreichend. Im Inblick auf die Erstellung des BSC-AGN-Datensatzes im nächsten Kapitel erwarte ich im Helligkeitsbereich $0 \leq B \leq 16.5 \approx 600$ AGN für eine vollständige Datensammlung.

Nimmt man eine Gruppe von AGN mit extrem schwacher Röntgenstrahlung an, so würden die Möglichkeiten der ROSAT-Mission nicht ausreichen, um die fehlenden AGN zu entdecken. Die Natur der fehlenden AGN ist also noch nicht ausreichend geklärt.

Erst mit der vollständigen Veröffentlichung vom "Sloan Digital Sky Survey" (SDSS) wird es wohl eine Möglichkeit geben, um den berechneten Anteil an fehlenden AGN zu überprüfen. Der verwendet SDSS eine andere Photometrie (Fukugita et al. 1996) als es beim HLC der Fall, wodurch eine Transformation der Helligkeiten nötig ist. Bei Norberg et al. (2002) wird diese photometrische Transformation durch nachfolgende Gleichungen realisiert:

$$B_J = g + 0.155 + 0.152(g - r) \tag{3.9}$$

$$B = g + 0.155 + 0.152(g - r) + 0.28(B - V)$$
(3.10)

Der Farbindex g - r liegt zwischen 0.2 und 1.2 mag. Auf der Homepage vom SDSS lässt sich bei den technischen Informationen entnehmen, dass für 100.000 farbselektierte Quasare einer Grenzhelligkeit $g_{\text{lim}} \approx 19.2$ erreicht wird. Dies entspricht umgerechnet einer Helligkeit von $B \approx 19.6$ (für g - r = 0.7 und B - V = 0.4). Bis $B \leq 19.6$ sind nach meiner Rechnung, der Summierung der Anzahl N aus Tabelle 3.4, noch $N \approx 160000$ AGN unbekannt. Der SDSS überdeckt den gesamten nördlichen Himmel ($\delta > 0^{\circ}$) und es kann erwartet werden, dass ein Großteil der fehlenden AGN gefunden wird. Wieviele der erwarteten Anzahl N aus Tabelle 3.4 jedoch gefunden werden, wird erst durch die abschließende Veröffentlichung dieses Katalogs klar. Der Veröffentlichung kann man mit Spannung entgegensehen. Gerade zu Abschluss dieser Arbeit gibt es die erste Veröffentlichung von Abazajian et al. (2003), der "The First Data Release of the Sloan Digital Sky Survey", leider konnte dazu noch keine weitere Analyse vorgenommen werden.

4. Der BSC-AGN-Datensatz und die Datengrundlagen

Die spektrale Energieverteilung (Kapitel 2.3) von röntgenselektierten Quasaren und Seyfert-Galaxien wird an diesem neuen Datensatz von AGN untersucht, der im Rahmen dieser Arbeit erstmals zusammengestellt wurde. Dieser neue Datensatz von AGN wird von mir nachfolgend immer als BSC-AGN-Datensatz bezeichnet, da BSC für "Bright Source Catalogue" steht. In der endgültigen Fassung enthält der BSC-AGN-Datensatz N = 253 AGN, dies stellt eine deutliche Verbesserung der Untersuchungsmöglichkeiten gegenüber der Arbeit von Elvis et al. (1994) dar, die mit N = 47 AGN erstellt wurde. Von diesen 47 AGN sind 24 AGN auch im BSC-AGN-Datensatz enthalten.

Bei der Untersuchung der SED gilt es, eine möglichst große, homogene Datensammlung aus den unterschiedlichen Frequenzbänder zusammenzutragen, um einen bestmöglichen Verlauf der SED zu erhalten. Für den BSC-AGN-Datensatz werden daher die Informationen für den Radio-, Nahinfrarot-, optischen und Röntgenbereich aus verschiedenen Quellen zusammengetragen und für eine gemeinsame Betrachtung entsprechend auf ein gemeinsames Einheitensystem umgerechnet. Die Quellen sind:

Hamburg/RASS Catalogue of Optical Identificatons (Zickgraf et al. 2003)
Catalogue of Quasars and Active Nuclei (Véron-Cetty & Véron 2000)
U.S. Naval Observatory Catalogue A2.0 - USNO A2.0 (Monet et al. 1998)
ROSAT All-Sky Survey (Voges et al. 1999)
Two Micron All Sky Survey - 2MASS (Skrutskie et al. 2000)
NRAO VLA Sky Survey - NVSS (Condon et al. 1998)

Besonders hervorzuheben sind die Daten des 2MASS-Projekts, die erst seit März 2003 zur Verfügung stehen. Hier wurden bezüglich Vollständigkeit und Nachweisempfindlichkeit neue Maßstäbe in der Infrarot-Astronomie (Wellenlänge $\lambda \approx 2\mu m$) gesetzt. Es sind nicht nur ausführliche Informationen für Punktquellen in einem Katalog (engl. point source catalogue, Cutri et al. 2003) erfasst, sondern auch ausgedehnte Quellen (engl. extended source catalogue, Jarrett et al. 2000) sind detailiert untersucht worden. Sämtliche Daten sind über die 2MASS-Homepage online verfügbar. Für die Radioinformationen wurde ebenfalls auf die Verfügbarkeit der Daten auf der NVSS-Homepage zurückgegriffen. Bei den Röntgeninformationen stand der Hamburg/RASS Catalogue of Optical Identifications (HRC) von Zickgraf et al. (2003) zur Verfügung, der den Ausgangspunkt des BSC-AGN-Datensates darstellt. Bei der Zusammenstellung der Daten im optischen Bereich musste mehr Arbeit aufgewendet werden, da hier bisher kein homogener Katalog zur Verfügung steht. Dies wird sich am Nordhimmel sicherlich mit der vollständigen Veröffentlichung des SDSS ändern, aber im Zeitrahmen dieser Arbeit sind die Daten noch nicht verfügbar.

Die Erstellung und Bearbeitung des BSC-AGN-Datensatzes und die endgültige Version für die Untersuchung der SED von röntgenselektierten Quasaren und Seyfert-Galaxien wird in diesem Kapitel genauer beleuchtet.

4.1 Erstellung des BSC-AGN-Datensatzes

Bei den vorangegangen Betrachtungen ist schon mehrmals erwähnt worden, dass die AGN auch Strahlung im Röntgenbereich emittieren. Dies ist der Ansatzpunkt gewesen, um einen röntgenselektierten Datensatz von AGN zu erstellen. In früheren Untersuchungen, z.B. Himmelsdurchmusterungen, wurden die AGN häufig durch den UV-Exzess im optischen Bereich identifiziert. Es kann damit jedoch nicht sichergestellt alle AGN zu entdecken, da der UV-Exzess nicht unbedingt die optischen Eigenschaften dominieren muss. Der Verlauf des BBB vom optischen Bereich in den Röntgenbereich hinein muss nicht unbedingt für alle AGN gleich stark sein. Durch eine Selektion der AGN mit großem UV-Exzess werden nur die AGN mit besonders starken BBB gefunden. Wechselt man in einen anderes Frequenzband, so ermöglich dies eine vom UV-Exzess unabhänginge Methode zur Entdeckung von AGN.

Im Rahmen dieser Art wurde ein neuer Katalog zusammengestellt, und bei der Zusammenstellung der Daten auf eine möglichst homogene Sammlung für die betrachteten AGN geachtet. Der BSC-AGN-Datensatz enthält optische helle AGN, die aus dem Hamburg/RASS Catalogue of Optical Identifications (HRC) von Zickgraf et al. (2003) stammen. Als AGN betrachte ich nun nur noch Seyfert-Galaxien und Quasare, wobei die Blazare, Radiogalaxien und LINERs im weiteren ausgeschlossen werden. Für die Zusammenstellung des BSC-AGN-Datensatzes wurden alle Objekte aus dem HRC selektiert, die ein optisches Gegenstück mit einer Helligkeit B < 16.5besitzen. Zusätzlich musste der angebene Klassifikationstyp im HRC einem AGNoder einer Galaxie entsprechen. Für die AGN oder AGN-Kandidaten ohne optische B-Helligkeit im HRC wurde nach einem möglichen optischen Gegenstück gesucht. Es sind N = 348 optisch helle AGN-Kandidaten und N = 10 mögliche AGN-Kandidaten dem Katalog entnommen worden. Diese AGN und AGN-Kandidaten sind die Ausgangsbasis für den BSC-AGN-Datensatz und der weiteren Selektionsschritte. Die AGN-Kandidaten sind mit der NASA/IPC Extragalactic Database (NED), dem Véron-Katalog und dem Hamburg Quasar Survey, kurz HQS, (Hagen et al. 1995) korreliert worden, um für die AGN-Kandidaten weitere Informationen, wie die Rotverschiebung und die Klassifikation zu erhalten oder gegebenenfalls zu überprüfen.

Für die optischen *B*-Helligkeiten wurde eine vollständige Neubetrachtung durchgeführt, da sich zu große Unterschiede in den Helligkeiten zwischen NED, Véron-Katalog, HQS und USNO A2.0 ergaben. Die USNO Helligkeiten sind oft zu hell, hingegen die Helligkeiten des HQS zu schwach für ausgedehnete AGN. Dies ist besonders problematisch für AGN mit geringer Rotverschiebung (z < 0.09), bei denen die Bilder schon meist sehr ausgedehnt sind und eine richtige Wahl der Appertur entscheidenden Einfluss auf die *B*-Helligkeit hat. Die Helligkeiten der entsprechenden AGN mit geringer Rotverschiebung wurden mit Hilfe der Originalquellen überprüft. Es wurde jeweils die Photometrie ausgewählt, die mit großen Aperturen gearbeitet hat oder die eine Korrektur für die totale Helligkeit angibt. Es gibt nur wenige Veröffentlichungen mit CCD-Photometrie. Für insgesamt N = 113 AGN mit z < 0.09wurden neue *B*-Helligkeiten und zugehörige Fehler bestimmt. Bei den restlichen AGN wurden die HQS-, beziehungsweise die USNO-Helligkeiten für die weitere Arbeit verwendet.

Zusammengefasst ergeben sich, beginnend mit N = 348 AGN-Kandidaten, N = 253 AGN-Kandidaten für die Untersuchung der spektralen Energieverteilung. Bei den übrigen Objekten handelt es sich um 41 Galaxien, 18 BL Lacs, eine Gravitationslinse, zwei kataklysmisch Veränderliche (engl. cataclysmic variable), kurz CV) und 40 Objekte mit unvollständigen Informationen für eine weitere Bearbeitung. Ein Objekt ist aus dem Katalog entfernt worden, da es bei Zickgraf et al. (2003) falsch klassifiziert wurde und weitere drei Objekte aufgrund von Kalibrationsfehlern in der Helligkeit. Die Ergebnisse dieser Untersuchungen sind in den Tabellen A.2 bis A.5 enthalten. Tabelle A.2 enthält die 40 AGN-Kandidaten den mit unvollständigen Informationen. In der Tabelle A.3 sind die N = 253 gesicherten AGN für die weitere Untersuchung der spektralen Energieverteilung enthalten. Unter dem Begriff Nahe Galaxien sind die 41 ausgeschlossen Galaxien in Tabelle A.4 zusammengefasst. In der Tabelle A.5 befinden sich 6 Objekte mit unzureichenden optischen Eigenschaften für eine weitere Bearbeitung.

Aufgrund der Analyse der vollständigen Himmelsdurchmusterungen erwarte ich im Helligkeitsbereich $0 \le B \le 16.5 \approx 600$ AGN. Mit N = 253 AGN ist der BSC-AGN-Datensatz nur zu $\approx 40\%$ vollständig.

Für die Untersuchung der spektralen Energieverteilung der röntgenselektierten Quasare und Seyfert-Galaxien ist nur die Tabelle A.3 wichtig. Sie enthält AGN mit ähnlichen Eigenschaften und erlaubt damit eine Bildung einer mittleren spektralen Energieverteilung, vergleichbar mit der mittleren SED von Elvis et al. (1994). Die anderen Objektgruppen sind für diese Art der Analyse ungeeingnet. Im nachfolgenden Text verstehe ich unter dem Begriff BSC-AGN-Datensatz nur noch die AGN, die in Tabelle A.3 zusammengefasst sind. Die weiteren Klassifikationsgruppen werden nicht weiter betrachtet. Die AGN der Tabelle A.3 erhalten eine Kennung, die eine fortlaufende Nummer darstellt. Das Formschema ist wie folgt:

BSC2134 - volle Kennung

- BSC bezeichnet den BSC-AGN Katalog
 - 2 steht für die als AGN bezeichnet Gruppe
- 134 die laufende Nummer im gesamten BSC-AGN-Datensatz

4.2 Datenquellen für den BSC-AGN-Datensatz

Die Konstruktion der SED für den BSC-AGN-Datensatz benötigt möglichst viele Informationen aus den unterschiedlichen beobachtbaren Frequenzbändern, vom Radiobereich bis in den hochenergetischen Bereich der Röntgenstrahlung, um eine detaillierte und exakte Betrachtung der SED sicherzustellen. Auf die unterschiedlichen Frequenzbänder wird in den nächsten Abschnitten noch genauer eingegangen. Werden in der Arbeit die Koordianten der AGN erwähnt, so handelt sich nachfolgend immer um die Koordinaten für den Equinox 2000. Dabei dienen als Bezugskoordinaten für die Suche in den anderen Frequenzbereichen immer die in den Tabellen A.2 bis A.5 gelisteten optischen Koordinaten der AGN.

4.2.1 Röntgenbereich

Da das Spektrum der AGN auch in den Röntgenbereich reicht, werden Daten aus diesem Bereich des Spektrums benötigt. Für eine möglichst homogene Datenlage sollten die Röntgendaten aus ein und derselben Quelle entstammen. Hierfür bietet sich die ROSAT-Mission besonders gut an. ROSAT, ein Akronym für das Wort Röntgensatellit, wurde im Juni 1990 von Cape Canaveral aus in einen geringen Erdorbit geschossen. Die Mission dauerte dann bis Februar 1999, also fast 9 Jahre. Bei der ROSAT-Mission verfolgte man zwei Hauptziele:

- Unter Ausnutzung der Flugbahn, wurde der gesamte Himmel durch ein abbildendes Röntgenteleskop nach Quellen mit Energien zwischen 0.1 – 2.4 keV durchsucht (Aug. 1990 bis Jan. 1991). Dabei wurden die Positionen der Quellen auf etwa 30" genau vermessen und es wurden die Röntgenflüsse sowie Breitbandspektren gewonnen. Es wurde dabei eine Erhöhung der Nachweisempfindlichkeit um einen Faktor 1000 gegenüber der UHURU-Mission erreicht (Voges 1992; Snowden & Schmitt 1990).
- Besonders interessante Röntgenquellen wurden dann in der zweiten Phase der Mission genauer untersucht. Es konnten dann detailierte Studien über deren zeitliche Veränderlichkeit und ihren spektralen Eigenschaften vorgenommen werden, immer unter Berücksichtigung der erreichten räumlichen Auflösung.

Als Ergebnis dieser Mission sind zwei Kataloge über Röntgenquellen entstanden. Der "ROSAT All-Sky Survey Faint Source Catalogue", kurz RASS-FSC (Voges et al. 2000) und der "ROSAT All-Sky Survey Bright Source Catalogue", kurz RASS-BSC (Voges et al. 1999).

Ein Ausschnitt der Gesamtdaten des RASS-BSC wurde von Zickgraf et al. (2003) für ihren HRC-Katalog verwendet. Aus diesem Katalog wurden dann die BSC-AGN-Objekte selektiert und die in HRC enthalten Informationen übernommen. Dies sind der monochromatische Fluss F_{ν} bei 2keV und die Steigung des Röntgenspektrums Γ , sowie der Fehler der Steigung d Γ .

Ein Fehler für den Fluss F_{ν} bei 2keV wird bei Zickgraf et al. (2003) nicht angegeben. Ich habe daher eine Abschätzung für einen möglichen Fehler vorgenommen. Das "High Energy Astrophysics Science Research Center", kurz HEASARC (Mukai 1993), ist ein Archiv von astronomischen Daten für extrem ultraviolette, Röntgen-, und Gamma-Strahlungsbeobachtungen. Auf deren Internetseite wird mit WebPIMMS (Version 3.3a) ein portierbarer, interaktiver Multi-Mission Simulator zur Verfügung gestellt, mit dessen Hilfe sich ROSAT-Zählraten in Flüsse F_{ν} umrechnen lassen. Dazu müssen die Wasserstoffsäulendichte n_H , die Steigung des Röntgenspektrums Γ , die Rotverschiebung z und die Zählrate bekannt sein. Durch Variation der Fehler der verschiedenen Größen kann stets ein Fluss F_{ν} berechnet werden. Für die Steigung des Röntgenspektrums Γ verwende ich nach Zickgraf et al. (2003) $\Gamma = 2.5$ als Richtwert und änderte diesen Wert um 0.5 nach oben und unten. Bei WebPIMMS gibt es die Möglichkeit die bekannten Säulendichten n_H im Umkreis von 1° zu bestimmen. Als Referenz für diese Säulendichten wird Dickey & Lockman (1990) angegeben. Für die erhaltenen Wasserstoffsäulendichten n_H bestimme ich einen Fehler durch Bildung von Mittelwert und Standardabweichung. Der Fehler der Zählrate ist im HRC bei Zickgraf et al. (2003) angegeben.

Ich habe nun jeweils eine Größe um 1 σ variiert, um eine Abschätzung der möglichen Streuung des Flüsses machen zu können. Diese Schritte führte ich für 5 verschiedene BSC-AGN-Objekte durch. Abschließend erhielt ich Flüsse mit Fehler von $\tilde{\sigma}_{F_{\nu}} \approx 13\%$ bis $\tilde{\sigma}_{F_{\nu}} \approx 57\%$. Aufgrund der Variationen und der erhaltenen Streuungen nehme ich für alle BSC-AGN-Objekte einen mittleren Fehler der Röntgenflusses von $\tilde{\sigma}_{F_{\nu}} \approx 30\%$ für die weitere Arbeit an.

4.2.2 Optischer Bereich

Der optische Bereich ist der bestbekannte Bereich des gesamten Spektrums der AGN. Aufgrund der guten Beobachtungsmöglichkeiten und dem Bau immer leistungsfähigerer Teleskope, ist der optischen Bereich am leichtesten zugänglich. Im optischen Bereich gibt es zahlreiche Helligkeitsmessungen in verschiedenen Bändern, aber keine optische Durchmusterung, die einheitlich gewonnene und kalibrierte Helligkeiten für den BSC-AGN-Datensatz liefert. USNO A2.0 und HQS überdecken zwar den gesamten Nordhimmel, aber die Helligkeiten wurden für ausgedehnte Objekte oft unterschätzt. Die Erzeugung eines homogenen Datensatzes optischen Helligkeiten muß ebenfalls mehrere Datenquellen verwenden. Als Quellen für die scheinbare Helligkeit der AGN wurden der Véron-Katalog, der HRC, NED und USNO A2.0 verwendet. Dabei wurden die *B*-Helligkeiten und die *V*-Helligkeiten für die Konstruktion der SED ausgewählt und in die Datensammlung übernommen. Es sei nochmal darauf hingewiesen, dass zur Ermittlung der *V*-Helligkeiten des Véron-Katalogs eine korrekte Umrechnung zu erfolgen hat. Diesmal wurde der umgekehrte Weg zu den Schritten in Kapitel 3 eingeschlagen. Es wurden aus:

$$B - O = -(0.27 \pm 0.06)(B - V)$$

 $B - R = 0.57$
 $B - I = 1.1$

mit einem mittleren B - V = 0.4 die V-Helligkeiten bestimmt, soweit nicht ein konkreter Wert für B - V angegeben ist.

$$V = -(0.67 \pm 0.06)(B - V) + O$$

$$V = 0.17 + R$$

$$V = 0.7 + I$$

Der Véron-Katalog stellt für einige AGN noch einen Farbindex U-B zur Verfügung, aus denen sich auch eine U-Helligkeit für die SED gewinnen. Da diese Daten weniger vollständig, gegen über den V-Helligkeiten, für den BSC-AGN-Datensatz verfügbar sind, werden die U-Helligkeiten nicht für die spektrale Energieverteilung verwendet. Dies ist auch bei den R-Helligkeiten der Fall. Die B- und V-Helligkeiten sind für alle N = 253 AGN des BSC-AGN-Datensatzes in Tabelle A.3 in den Spalten "MagF" und "mVer" zu finden.

Es sind abschließend als Helligkeiten im Optischen folgende Informationen aus den Katalogen zusammengetragen:

B - aus BSC-AGN-Datensatz V - aus Véron U - aus Véron für 103 AGN R - aus USNO A2.0

Aus den ermittelten *B*-Helligkeiten lässt sich auch die absolute Helligkeit M_B berechnen. Diese Bestimmung der absoluten Helligkeit M_B erfolgt nach Stepanian et al. (2003), unter Verwendung der *B*-Helligkeiten und der Rotverschiebung *z* des BSC-AGN-Datensatzes.

$$M_B(z,\alpha) = B - 5\log\left[z\left(1 + \frac{z}{2}\right)\right] + 2.5(1+\alpha)\log(1+z) - 43.89$$
(4.1)

Nach Wisotzki et al. (2000) verwende ich folgende Werte für α :

für z = 0 bis 0.5 ein $\alpha = +0.36$

für
$$z = 0.5$$
 bis 2.2 ein $\alpha = -0.45$.

Diese α -Werte für die K-Korrektur wurden aus einer Multiwellenlängenphotometrie mit 25 Quasaren geringer Rotverschiebung gewonnen. Der Wert für α beträgt bei Stepanian et al. (2003) 0.7, und unterscheidet sich von den von mir verwendeten Werten aus Wisotzki et al. (2000). Mit dieser Umrechnung sind alle verwendbaren Helligkeiten im optischen Bereich für den BSC-AGN-Datensatz zusammengestellt.

4.2.3 Nahes Infrarot

Die Entwicklung der Infrarot-Dektetor-Technologie in den letzten Jahrzehnten machte solche Fortschritte, dass die letzte Durchmusterung des gesamten Himmels im Nahen Infrarot vor 25 Jahren nicht länger dem Stand der Technik entsprach. Die Universität von Massachusetts führte daher ein Projekt durch, den "Two Micron All Sky Survey" (2MASS Skrutskie et al. 2000). Bei diesem Projekt wurde der gesamte Himmel in den Filterbändern J (1.25 μ m), H (1.65 μ m) und K_s (2.17 μ m) nach Sternen und Galaxien durchsucht, die bis zu 50000 mal schwächer waren, als in der letzten Himmelsdurchmusterung. Die wissenschaftliche Motivation für eine solch tiefe Himmelsdurchmusterung war dabei:

- Im infraroten Bereich ist die Extinktion durch ein interstellares Medium nur noch $\approx 10\%$ gegenüber der Extinktion bei optischen Wellenlängen. Es ist möglich Galaxien nachzuweisen, die sich bei kleinen galaktischen Breiten befinden und im Optischen möglicherweise durch Staub verdeckt sind. Somit kann man auch in kosmische Entfernungen zu blicken, die deutlich weiter sind gegenüber den Entfernungen, die im optischen Bereich möglich sind, da auch schwächere AGN noch nachweisbar sind.
- Entwickelte Rote Riesen Sterne erzeugen in anderen Galaxien den größten Anteil des Lichts und sie sind im Nahen Infrarot am hellsten. Weiterhin haben sich diese Sterne aus solchen Sternen entwickelt, die am häufigsten in Galaxien vorkommen, den normalen Hauptreihensternen. Daher ist eine Betrachtung der Galaxien im Nahen Infrarot dazu geeignet die Masse der enthaltenen Sterne zu bestimmen.
- Es gibt eine Gruppe von Objekten, z.B. Braune Zwerge oder Sterne mit zu geringen Massen für Kernbrennen, bei denen die Emission von Strahlung hauptsächlich im Nahen Infrarot stattfindet. Eine Entdeckung dieser Objekte bedarf einer tiefen großflächigen Himmelsdurchmusterung.

Die nördliche Hemisphäre ist mit der 2MASS-Anlage am Mt. Hopkins, beginnend im Juni 1997, durchsucht worden. Das Projekt ist im März 2003 mit der vollständigen Veröffentlichung der Daten abgeschlossen worden. Basierend auf den veröffentlichten Katalogen wurden die Daten der Objekte des BSC-AGN-Datensatzes über das Webinterface des NASA/IPAC InfraRed Science Archive (IRSA) bezogen.

Aus dem Punktquellenkatalog (engl. Point Source Catalogue, kurz PSC, Cutri et al. 2003) werden die Helligkeiten in den 3 Bändern J, H und K_s sowie deren Fehler dJ, dH und dK_s übernommen. Diese Helligkeiten entstanden hauptsächlich aus einer 1.3 Sekunden langen Messung und einer anschließenden Profilanpassung der gemessenen Helligkeitsverteilung zur Bestimmung der Helligkeit des Objekts. Im Rahmen dieser Profilanpassung ergibt sich auch ein Fehler für die bestimmte Helligkeit. Diese Art der Helligkeitsbestimmung ist der Fall, wenn der "Lese"-Marker (Spalte rdf in Tab.A.7) gleich "2" ist. Es treten noch die Fälle "0" und "6" auf. Im Fall "0" entspricht die Helligkeit einer 95 prozentigen oberen Grenze, da das Objekt in diesem Band bei einer Apertur von 4" nicht nachgewiesen ist. Der Fall "6" unterscheidet sich gegenüber dem Fall "0" dadurch, dass es ein detektiertes Objekt gibt, aber es nicht in allen Bändern ausreichend aufgelöst ist. Daher reichen die Informationen nur für eine obere Grenze aus. In der Tabelle A.7 sind alle gesammelten Informationen über den PSC zusammengetragen. Es sind alle 253 BSC-AGN-Objekte innerhalb 15" im PSC gefunden worden. In Fällen mit mehr als einer PSC-Quelle wurde die Quelle ausgewählt, die bei einem Vergleich der Quellenpositionen mit dem optischen Zentrum des AGN die beste Übereinstimmung ergaben.

Der Katalog für ausgedehnte Quellen (engl. Extended Source Catalogue, Jarrett et al. 2000) XSC enthält, gegenüber dem PSC, detaillierte Informationen über die Eigenschaften eines ausgedehnten Objekts im 2MASS. Diese Informationen sind nicht mehr für alle BSC-AGN-Objekte verfügbar. Innerhalb von 15" sind für 135 BSC-AGN-Objekte Einträge im XSC enthalten. Bei einer Ausdehnung des Suchbereich auf 60" werden nur noch 9 weitere BSC-AGN-Objekte gefunden. Die verfügbaren Informationen sind wieder Helligkeiten in den 3 bekannten Filter. Diese Helligkeiten sind mit verschiedenen Blendengrößen von 5", 7", 10", 15", 20", 25", 30", 40", 50", 60" und 70" gewonnen. Es gibt auch noch "default"-Helligkeiten mit Blenden, die so gewählt wurden, dass die Randhelligkeiten einen Wert von 20 bzw. 21 Magnituden pro Quadratbogensekunden erreicht (20 mag/ \Box " oder 21 mag/ \Box ") hat. Für die weitere Analyse verwende ich die Helligkeiten bei einer Blendengröße von 20 mag/ \Box " und die Helligkeiten für die 5"-Blende. Die Tabellen A.9 und A.10 mit den gesammelten Informationen für den BSC-AGN-Datensatz aus dem XSC-Katalog sind im Anhang zu finden.

Trotz der hohen Präzision des 2MASS konnte nicht immer für alle Helligkeiten der drei Bänder ein Fehler bestimmt werden. Diese werden im Katalog mit den Schlüsselwort "NULL" gekennzeichnet. Ist dies der Fall, so setze ich den Fehler der Helligkeit auf 0.5 mag. Diese Größenannahme des Fehlers stellt mit Sicherheit eine oberen Grenze dar, besitzt damit eine einschränke Funktion für die Helligkeiten in den drei Bändern. Das negative Vorzeichen besitzt dabei nur kennzeichnenden Charakter und wird in den weiteren Rechnungen mitgeführt, so dass diese Fälle leicht zu erkennen sind.

Bei nahen ausgedehnten AGN, zumeist die Seyfert-Galaxien, muss für die Bestimmung der Helligkeiten in den drei Bändern J, H und K_s der PSC- und der XSC- Katalog verwendet werden. Ein Vergleich der der PSC-Helligkeiten mit den XSC-Helligkeiten aus einer 5" Apertur zeigt systematisch höheren PSC-Helligkeiten. Es ist daher anzunehmen, dass hier die Einflüsse der umliegenden Galaxie ein Rolle in der Bestimmung der PSC-Helligkeiten bei 2MASS spielen. Durch Ausnutzung einer linearen Korrelation der Helligkeiten J, H und K_s des PSC- und XSC-Katalogs (z.B. $J_5 = a_0 + a_1 \cdot J$, mit J_5 für eine 5" Apertur der XSC und J aus dem PSC), werden die PSC-Helligkeiten korrigiert. Der störende Einfluss der umliegenden Galaxien verursacht um etwa 0.4 mag hellere PSC-Helligkeiten gegenüber den 5" Apertur-Helligkeiten den XSC. Für die weitere Arbeit verwende ich die 0.4 mag korrigierten PSC-Helligkeiten und deren unveränderte Fehler.

4.2.4 Radiobereich

Mit dem bekannten Radiointerferometer des Very Large Arrays (VLA) in Arizona wurde eine Himmelsdurchmusterung über den ganzen Himmel nördlich von $\delta = -40^{\circ}$ durchgeführt. Das "National Radio Astronomy Observatory" (NRAO) führte diesen "NRAO VLA Sky Survey", kurz NVSS durch (Condon et al. 1998). Bei einer Frequenz von 1.4 GHz sind alle Radioquellen bis zu einer Flussgrenze von $F \approx 2.5 \text{ mJy}$ beobachtet worden. Die erzielte Auflösung betrug etwa 45". Das gesamte Projekt lief über 3 Jahre, zwischen September 1993 und Oktober 1996. Durch 217446 sogenannte Schnappschüsse wurde die beobachtbare Himmelsfläche abgedeckt und in einem weiteren Schritt zu 2326 Feldern mit 4°x 4° Größe zusammengesetzt, die als "dritte" Achse die Stokes Polarisationsparameter I, Q und U enthält. Mit 45″ ist die erreichte Auslösung deutlich größer als die mittlere Winkelausdehnung ($\approx 10''$) von schwachen extragalaktischen Quellen, jedoch sind die Positionen der Quellen besser als 7" genau bestimmt worden. Für Quellen mit einem Fluss $F \ge 15$ mJy wurde sogar eine Positionsgenauigkeit von $\leq 1''$ erreicht. Der abschließende Katalog enthält etwa 2 Millionen Radioquellen, einschließlich Radiogalaxien, Quasare, die meisten Galaxien des "IRAS Faint Source Catalog" (Moshir et al. 1992), ultraleuchtkräftige Starburst Galaxien in kosmisch großen Entfernungen, nahe "normale" Galaxien, AGN mit geringer Leuchtkraft, galaktische Nebel, Pulsare und Sterne.

Über den Source Browser wurde, zum Auffinden der BSC-AGN-Objekte, eine Abfrage mit 90'' und 15'' gemacht. Diese Wahl wurde so getroffen, um sicherzustellen den gesamten Radiofluss aller Komponenten des AGN zu erhalten (90''), und um den Kernradiofluss zu bestimmen (15"). Die Suchradien folgen ebenfalls dem Vorgehen der Arbeit von Zickgraf et al. (2003). Die großräumige Radiostruktur der FR I- und FR II-Typen verlangt diese Art der Betrachtung. Als Ergebnis der Abfrage wurden N = 125 Radioquellen gefunden, von denen N = 17 mehr als eine Radioquelle innerhalb von 90" besitzen. Aus der Arbeit von Zickgraf et al. (2003) wurde die Anzahl der Radioquellen pro AGN übernommen, da hier schon eine Uberprüfung der Zusammengehörigkeit von Radioquellen und AGN vorgenommen wurde. Anschließend wurde die Summe der Radioflüsse der zugehörigen Radioquellen bestimmt, und der Fehler des Radioflusses berechnet. Als Ergebnis der Webabfrage erhält man Informationen über den Radiofluss, dessen Fehler, den Abstand der Katalogquelle zu den gewählten Koordinaten und den Positionswinkel der Katalogquelle. In der Tabelle A.11 sind die Informationen für den BSC-AGN-Datensatz aus dem NVSS zusammengetragen. Der Radiofluss $(F_{\rm NVSS} \pm dF_{\rm NVSS})$ ist in Jansky gegeben, wodurch keine zusätzlichen Umrechungen nötig sind und der Fehler nicht erst noch weiter abgeschätzt werden muss. Die Einheit Jansky ist eine spezielle Einheit für einen Fluss und dem wegweisenden Radioastronomen Karl Jansky zu Ehren so benannt worden. Sie ist definiert als $1Jy = 10^{-26} \text{ W m}^{-2} \text{ Hz}^{-1} = 10^{-23} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ Hz}^{-1}$.

4.3 Multiwellenlängeninformationen für den verwendeten BSC-AGN-Datensatz

Aufgrund der Detailarbeit bei den einzelnen Frequenzbändern sind nun alle Informationen für die abschließende Zusammenstellung des BSC-AGN-Datensatzes verfügbar. Es sind dabei aber einige Einschränkungen in der Verwendbarkeit der Daten zu machen.

Im Röntgenbereich wird der monochromatische Fluss F_{ν} bei 2keV und die Steigung des Röntgenspektrums Γ , sowie der Fehler der Steigung d Γ verwendet. Desweiteren wurde ein Fehler für den monochromatische Fluss F_{ν} abgeschätz, der mit einem Wert 30% angenommen wird. Dieser Fehler ist eher als eine Eingrenzung des möglichen Wertebereichs zu verstehen, als ein echter Fehler des verwendeten Flusses.

Die optischen Helligkeiten sind aus den verschiedenen Katalogen selektiert worden und stehen nun für weitere Umrechnungen in Flüsse und Leuchtkräfte zur Verfügung. Der BSC-AGN-Datensatz enthält desweiteren die Rotverschiebung z, die absolute Helligkeit M_B , einen Klassifikationstyp nach NED und Véron, eine Objektkennzeichnung (BSCxxxx) und den ROSAT-Namen, sowie einen allgemeinen Objektnamen. Die Tabelle A.3 enthält die N = 253 AGN für den weiteren Teil dieser Arbeit.

Bei den 2MASS-Beobachtungen sind besonders die nahen Seyfert-Galaxien räumlich ausgedehnten, aufgelöstete Objekte. Dies führte bei einigen PSC-Quellen zu Schwierigkeiten bei der Bestimmung der Helligkeiten in den 3 Bändern (Spalte PhQ). In Zentrumsnähe sind die Helligkeiten nicht immer mit der gleichen Qualität durch die verwendete Anpassungsroutine des 2MASS-Programms ermittelbar. Es bleibt daher nicht immer zweifelsfrei geklärt, ob es sich um die Kernhelligkeit des AGN oder eine besonders aktive Zone der umliegenden Galaxie handelt. Um dieses Problem einzuschränken, wurde bei einigen BSC-AGN-Objekten eine Neubestimmung der optischen Koordinaten vorgenommen, da auch optische Positionen nicht immer exakt bestimmt sind. Diese Neubestimmung soll sicher stellen, dass nun die gefundene Quelle des PSC möglichst dicht am optischen Zentrum des AGN befindet.

Es sind etwas mehr als die Hälfte der AGN aus dem BSC-AGN-Datensatz im Radiobereich nachgewiesen worden. Für die restlichen BSC-AGN-Objekte kann nur eine obere Grenze im Radiofluss von F = 2.5 mJy angenommen werden. Analog zum Vorgehen bei den Infrarotdaten wird der Fehler des Radioflusses d $F_{\rm NVSS}$ mit einem negativen Vorzeichen versehen und auf den Wert d $F_{\rm NVSS} = 1$ mJy gesetzt. Dieser Wert ergibt sich daraus, dass die Fehler des Radioflusses der gefundenen AGN von 0% bis 40% reichen. Für F = 2.5 mJy entspricht 40% einem Fehler von d $F_{\rm NVSS} = 1$ mJy. Die später bestimmten Leuchtkräfte L stellen nur eine obere Grenze dar, und der Verlauf der SED ist nur als eine ungefähre Abschätzung des realen Verlaufs zu verstehen. Auch in der Untersuchung der Radiostärke, also die Trennung in ,radiolaute' und ,radioleise' AGN, sind nur Angaben über eine obere Grenze der Radiolautstärke möglich.

5. Analyse der verschiedenen Frequenzbereiche

Die bisher gesammelten Daten der Frequenzbereiche sind in unterschiedlichen Einheitensystemen gegeben. Es handelt sich im Optischen und Infraroten um Helligkeiten, hingegen sind im Radio- und Röntgenbereich schon die Flüsse verfügbar. Die Darstellung der Datenpunkte in der SED verlangt ein einheitliches System von Einheiten bei den verwendeten Flüssen oder Leuchtkräften. Um die unterschiedlichen Frequenzbereiche miteinander vergleichen zu können, sind die gegeben Helligkeiten entsprechend in Flüsse umzurechnen. Die Flüsse müssen ebenfalls ein einheitliches Einheitensystem aufweisen, da es auch hier für die unterschiedlichen Frequenzbereiche verschiedene Einheiten gibt.

In der Astronomie sind die verwendeten Einheiten historisch gewachsen. Dies führt häufig dazu, dass das internationle SI-Einheitensystem nur schwer Einzug hält. Um Ergebnisse mit anderen Arbeiten leichter vergleichen zu können, richten sich die meisten Arbeit an schon verwendete Einheitensysteme. Um meine Ergebnisse mit der Arbeit von Elvis et al. (1994) vergleichen zu können, werde ich auch dessen Einheitensystem verwenden. Daher besitzen die Flüsse als Einheit zum Beispiel: $[F_{\nu}] = \text{erg cm}^{-2} \text{ s}^{-1} \text{ Hz}^{-1}$, nicht etwa gemäß SI: $[F_{\nu}] = \text{W} \text{ m}^{-2} \text{ Hz}^{-1}$.

5.1 Vorbereitende Umrechnungen

5.1.1 Flüsse

Im Radio- und Röntgenbereich sind die Flüsse der AGN schon pro Frequenzintervall $d\nu$ gegeben. Eine Berechnung der Flüsse aus den gegebenen scheinbaren Helligkeiten m_x im Infraroten und im Optischen erfolgt durch die Gleichung:

$$F_{\lambda} = 10^{-0.4(m_x - m_{Wega})} \cdot F_0$$

$$[F_{\lambda}] = \operatorname{erg} \operatorname{cm}^{-2} \operatorname{s}^{-1} \operatorname{\mathring{A}}^{-1}$$

$$[F_0] = \operatorname{erg} \operatorname{cm}^{-2} \operatorname{s}^{-1} \operatorname{\mathring{A}}^{-1}$$
(5.1)

Band	Wellenlänge λ	Nullpunktsflüsse F_0		Referenz
	[Å]	$[\text{erg cm}^{-2} \text{ s}^{-1} \text{ Å}^{-1}]$	[Jy]	
J	12300	$3.05 10^{-10}$	1538	Colina et al. (1996)
J	12500		1600 - 1670	Skinner (1996)
J	12500		1567	Elvis et al. (1994)
J	12500		1635	Koornneef (1983)
J	12350		$1594{\pm}28$	Cohen et al. (2003) , DIP
Η	16400	$1.10 \ 10^{-10}$	986	Colina et al. (1996)
Η	16500		980 - 1020	Skinner (1996)
Η	16500		1016	Elvis et al. (1994)
Η	16500		1090	Koornneef (1983)
Η	16620		$1024{\pm}20$	Cohen et al. (2003) , DIP
\mathbf{K}_{s}	21500	$4.18 \ 10^{-10}$	650	Colina et al. (1996)
Κ	22000		650 - 657	Skinner (1996)
Κ	22000		687	Elvis et al. (1994)
Κ	22000		665	Koornneef (1983)
\mathbf{K}_{s}	21590		667 ± 13	Cohen et al. (2003) , DIP
V	5483	$3.67 \ 10^{-09}$	3677	Colina et al. (1996). DIP
V	5600		3540	Skinner (1996)
V	5400		3647	Elvis et al. (1994)
В	4443	$6.40 \ 10^{-09}$	4211	Colina et al. (1996), DIP
В	4400		4333	Elvis et al. (1994)

Tabelle 5.1: Tabelle mit den verwendeten Nullpunktsflüssen F_0 von Wega in den zugehörigen Wellenlängenbändern. Die Nullpunktsflüsse F_0 der mit DIP gekennzeichneten Referenzen werden für die Umrechnung der Helligkeiten in Flüsse im Abschnitt 5.1.1 verwendet.

Dabei steht der Index x im Infraroten für die Bänder J, H und K_s und im Optischen für die Bänder B und V. F_0 ist der Fluss des Standardsterns Wega im jeweiligen Band. Mit m_{Wega} ist die Helligkeit von Wega (Spektraltyp A0) gemeint, wobei diese Helligkeit im optischen Bereich der Größenklasse 0 mag entspricht. Der Fluss der Wega wird als Standard zur Bestimmung von Nullpunktsflüssen F_0 für die verschiedenen photometrischen Systeme verwendet (Megessier 1995, und dortige Referenzen). In Tabelle 5.1 sind für die verschiedenen Messbereiche die Nullpunktsflüsse von Wega aufgelistet. Die Nullpunktsflüsse F_0 im Wellenlängenbereich (F_{λ}) lassen sich in Nullpunktsflüsse F_0 im Frequenzbereich (F_{ν}) umrechnen:

$$F_{\nu} = \frac{1}{3 \cdot 10^{-13}} \lambda^{2} F_{\lambda}$$

$$[\lambda] = \mu m$$

$$[F_{\lambda}] = \operatorname{erg} \operatorname{cm}^{-2} \operatorname{s}^{-1} \operatorname{\AA}^{-1}$$

$$[F_{\nu}] = \operatorname{Jy} = 10^{-26} \operatorname{W} \operatorname{m}^{-2} \operatorname{Hz}^{-1} = 10^{-23} \operatorname{erg} \operatorname{cm}^{-2} \operatorname{s}^{-1} \operatorname{Hz}^{-1}$$
(5.2)

Bei der Wahl der Nullpunktsflüssen F_0 im Infraroten verwende ich die von Cohen et al. (2003) gegebenen Werte (mit DIP gekennzeichnet in Tab. 5.1). Diese Werte werden auf der Homepage des 2MASS-Katalogs als geeignete Umrechnungen von Helligkeiten im Größenklassensystem in Flüsse angegeben. Im optischen Bereich werden die Nullpunktsflüsse F_0 von Colina et al. (1996) verwendet. Die meisten Umrechnungsfaktoren in Tabelle 5.1 sind in Jansky gegeben, wodurch es sich anbietet Formel 5.1 und Formel 5.2 zusammenzufassen, um die Helligkeiten m_x in den Fluss F_{ν} umrechnen zu können.

$$F_{\nu} = 10^{-0.4(m_x - m_0)} \cdot \frac{1}{3 \cdot 10^{-13}} \,\lambda^2 \cdot F_0 \tag{5.3}$$

Die Einheit des Flusses ist $[F_{\nu}] = Jy = 10^{-23} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ Hz}^{-1}$.

Im BSC-AGN-Datensatz wurden auch Fehler für die optischen Helligkeiten bestimmt, sowie die angegebenen Fehler des 2MASS übernommen. Diese Fehler der Helligkeiten ermöglichen es auch einen Fehler für den Fluss zu berechnen. Es wird durch das Gaußsche Fehlerfortpflanzungsgesetz für eine Funktion $f(x_1, x_2, ..., x_k)$ der Fehler $\tilde{\sigma}_f$ nach:

$$\tilde{\sigma}_f^2 = \sum_{j=1}^k \left(\frac{\partial f}{\partial x_j}\right)^2 \tilde{\sigma}_{\bar{x}_j}^2 \tag{5.4}$$

berechnet. Die unabhängigen Variablen $x_1, x_2, ..., x_k$ mit ihren Fehlern $\tilde{\sigma}_{\bar{x}_1}, \tilde{\sigma}_{\bar{x}_2}, ..., \tilde{\sigma}_{\bar{x}_k}$ müssen vorher bekannt sein. Somit ergibt sich für den Fluss F_{ν} in Formel 5.3 durch Gaußsche Fehlerfortpflanzung aus:

$$F_{\nu} = c10^{-0.4(m_x - m_{\text{Wega}})} \tag{5.5}$$

Der Fehler des Flusses $\tilde{\sigma}_{F_{\nu}}$:

$$\tilde{\sigma}_{F_{\nu}} = \sqrt{(c10^{-0.4\,x} \cdot \ln 10 \cdot -0.4)^2 \cdot (\sigma_{m_x})^2} \tag{5.6}$$

5.1.2 K-Korrektur

Aufgrund der Rotverschiebung z des AGN verschiebt sich der beobachtete Wellenlängenbereich in einen anderen Wellenlängenbereich im Ruhesystems des AGN. Abhängig von der Form des AGN-Spektrums ergibt sich dadurch eine andere intrinsische Helligkeit $m_{\text{intr.}}$ gegenüber der beobachteten Helligkeit $m_{\text{obs.}}$. Um die intrinsische Helligkeit $m_{\text{intr.}}$ des AGN in dessen Ruhesystem richtig zu bestimmen, ist eine Korrektur nötig. Oke & Sandage (1968) führten dazu die sogenannte K-Korrektur ein, welche definiert ist als:

$$K(z,\alpha) = 2.5(\alpha - 1)\log(1 + z) + K_0$$
(5.7)

Die K-Korrektur $K(z,\alpha)$ ist eine rotverschiebungsabhängige Größe, bei der die Steigung α des AGN-Spektrums mit einfließt. Mit K_0 kann eine Nullpunktskorrektur vorgenommen werden. Die K-Korrektur kann für die scheinbare Helligkeit m oder den Fluss F durchgeführt werden.

$$m_{\text{intr.}} = m_{\text{obs.}} - K(z, \alpha) \tag{5.8}$$

$$F_{\text{intr.}} = F_{\text{obs.}} \, 10^{0.4 \, K(z,\alpha)}$$
(5.9)

$$= F_{\text{obs.}} (1+z)^{\alpha-1} \cdot 10^{0.4K_0} \tag{5.10}$$

Die beobachteten Werte werden mit Hilfe der K-Korrektur in die intrinsischen Werte umgerechnet. Es ist auch hierbei immer zu beachten, wie das Vorzeichen des Spektralindex α definiert ist. Gemäß meiner Vorzeichenkonvention in Formel 2.7 enthält

der Spektralindex hier kein negatives Vorzeichen.

In den verschiedenen Frequenzbereichen wird es sicherlich unterschiedliche Spektralindizes geben, da die SED nicht über den gesamten Frequenzbereich monoton verläuft. Aufgrund der Daten in den verschiedenen Frequenzbereichen muss eine Auswahl für die Steigungen des AGN-Spektrums getroffen werden.

Im Optischen: Nach Wisotzki (2000) verwende ich folgende Werte für α und K_0 : für z = 0 bis 0.5 ein $\alpha = +0.36$ und $K_0 = -0.10$ für z = 0.5 bis 2.2 ein $\alpha = -0.45$ und $K_0 = -0.42$.

Im Infraroten:

Nach Alonso-Herrero et al. (2003) verwende ich hier folgende Werte für α und K_0 : für alle $z \text{ ein } \alpha = +1.48$ und $K_0 = 0$

Im Radiobereich:

Nach Zickgraf et al. (2003) verwende ich dafür folgende Werte für α und K₀: für alle $z \text{ ein } \alpha = -0.5$ und $K_0 = 0$

Im Röntgenbereich:

Nach Zickgraf et al. (2003) verwende ich die folgenden Werte für α und K_0 : für alle z ein $\alpha = +1.5$ und $K_0 = 0$

5.1.3 Leuchtkräfte

Nachdem die Flüsse der einzelnen Frequenzbereiche entsprechend der K-Korrektur $K(z, \alpha)$ umgerechnet wurden, können diese korrigierten Flüsse F_{ν} zur Berechnung der Leuchtkraft L_{ν} verwendet werden. Der Zusammenhang von Flüssen F_{ν} und Leuchtkräften L_{ν} ist folgendermaßen:

$$F_{\lambda,\nu} = \frac{L_{\lambda,\nu}}{4\pi D_l^2} \tag{5.11}$$

$$D_l = \frac{c}{H_0} A(z, q_0)$$
(5.12)

Für den rotverschiebungsabhängigen Korrekturfaktor $A(z,q_0)$ und die Leuchtkraftentfernung D_l (engl. luminosity distance) selbst sind die kosmologischen Parameter H_0 und q_0 zu wählen. Die Hubblekonstante H_0 wird zum gegenwärtigen Zeitpunkt auf einen Wert von $H_0 = 72 \pm 8 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (Freedman et al. 2001) bestimmt. Um das Ergebnis der Umrechnungen wieder leichter mit anderen Arbeiten vergleichen zu können, wähle ich für $H_0 = 50 \text{ km s}^{-1} \text{ Mpc}^{-1}$ aus, wie dies bei Elvis et al. (1994) der Fall ist.

Der Abbremsparameter q_0 wird mit $q_0 = 0.5$ gewählt, ebenfalls wie bei Elvis et al. (1994) verwendet. Für den rotverschiebungsabhängigen Korrekturfaktor A(z,q_0) gilt nach Véron-Cetty & Véron (2000):

$$A(z,q_0) = z \left(1 + \frac{z \left(1 - q_0\right)}{\sqrt{1 + 2q_0 z} + 1 + q_0 z} \right)$$
(5.13)

oder eine äquivalente Formulierung nach Unsöld & Baschek (1999) und Stepanian et al. (2003):

$$A(z,q_0) = \frac{q_0 z - (1-q_0) \left[\sqrt{1+2q_0 z} - 1\right]}{q_0^2}$$
(5.14)

Bei einigen Arbeit wird auch ein Abbremsparameter $q_0 = 0$ verwendet. Die Gleichung 5.13 vereinfacht sich bei der Betrachtung der Spezialfälle $q_0 = 0$ und $q_0 = 0.5$.

$$A(z,0) = z\left(1+\frac{z}{2}\right)$$
 (5.15)

$$A(z, 0.5) = 2\left(1 + z - \sqrt{1+z}\right)$$
(5.16)

Nachdem nun alle unbekannten Größen in Formel 5.11 und 5.12 bekannt sind, lässt sich die Leuchtkraft L_{ν} berechnen.

$$L_{\nu} = 4\pi \frac{c^2}{H_0^2} F_{\nu} A^2(z, 0.5)$$
(5.17)

Der Faktor $4\pi \frac{c^2}{H_0^2}$ hat einen Wert von $4.30 \cdot 10^{57}$ cm². In Übereinstimmung mit der Art der Darstellung der SED in einem log F_{ν} - log ν Diagramm, wird nachfolgend immer pro Frequenzintervall gerechnet. Für die Einheiten ergibt sich in den Formeln 5.11 und 5.17 somit, $[F] = \text{erg s}^{-1} \text{ cm}^{-2} \text{ Hz}^{-1}$ und $[L] = \text{erg s}^{-1} \text{ Hz}^{-1}$. Aus den Fehlern der berechneten Flüsse ($[\tilde{\sigma}_F] = \text{erg s}^{-1} \text{ cm}^{-2} \text{ Hz}^{-1}$) werden hier durch Gaußsche Fehlerfortpflanzung wiederum Fehler für die Leuchtkräfte ($[\tilde{\sigma}_L] = \text{erg s}^{-1} \text{ Hz}^{-1}$) berechnet.

5.2 Grundlegende Eigenschaften der BSC-AGN

Im vorherigen Abschnitt sind die Umrechnungen der Flüsse F und der Leuchtkräfte L für die AGN des BSC-AGN-Datensatzes beschrieben worden. Aber wie sehen denn nun die Ergebnisse dieser Rechnungen aus? Sind schon besondere Eigenschaften zu erkennen und was ergibt sich daraus im Hinblick auf die SED?

5.2.1 Rotverschiebung z und optische Eigenschaften

Die AGN des BSC-AGN-Datensatzes reichen bis zu einer Rotverschiebung von z = 2.17. Von allen AGN haben N = 201 eine Rotverschiebung $z \leq 0.3$, und dies entspricht einem Anteil $\approx 80\%$ am Gesamtkatalog. Die Verteilung der Rotverschiebungen z aller BSC-AGN-Objekte ist in Abbildung 5.1(a) zu sehen. Es gibt zwei BSC-AGN-Objekte mit einer Rotverschiebung z > 1.2, die in dem Histogramm nicht dargestellt sind. Der Hauptteil der AGN besitzt also eine kleine Rotverschiebung. Die K-Korrektur $K(z, \alpha)$ und der rotverschiebungsabhängige Korrekturfaktor für die Leuchtkraftentfernung $A(z, q_0)$ haben nur in der Größenordnung von 5% ($z \approx 0.1$) bis 15% ($z \approx 0.3$) Einfluss auf die Flüsse F und Leuchtkräfte L. Für z = 0.5 ergibt sich eine Änderung des Flusses durch die K-Korrektur $K(z, \alpha)$ um $\approx 20\%$. Aus den optischen B-Helligkeiten (Abb. 5.1(b)) wurden die absoluten Helligkeiten M_B nach Formel 4.1 berechnet (Abb. 5.1(c)). Beim BSC-AGN-Datensatz besitzen $\approx 45\%$ aller AGN eine absoluter Helligkeit $M_B > -23$.

Die Arbeit von Elvis et al. (1994) wird als Referenz für die SED verwendet, und eine Analyse der Eigenschaften ist für die Beurteilung der Ergebnisse hilfreich. Die Verteilung der AGN aus der Arbeit von Elvis et al. (1994) sind in den Abbildungen 5.1(a) bis 5.1(c) jeweils blau schraffiert. Die verwendeten V-Helligkeiten von Elvis et al. (1994) wurden mit einem mittleren B - V = 0.4 umgerechnet und nach Formel 4.1 die absolute Helligkeit M_B bestimmt. Für Elvis et al. (1994) beträgt der Anteil der AGN mit absoluter Helligkeit $M_B > -23$ nur $\approx 27\%$. In der Arbeit von Elvis

(a) Histogramm der Rotverschiebung $z \leq 1.2$

(b) Histogramm der scheinb. Helligkeit B

(c) Histogramm der absoluten Helligkeit M_B

(d) Verteilung der absoluten Helligkeit M_B und Rotverschiebung $z \leq 1.2$

Abbildung 5.1: Durch die Verteilungen von Rotverschiebung z, scheinbarer Helligkeit B und absoluter Helligkeit M_B lassen sich die Eigenschaften des BSC-AGN-Datensatzes übersichtlich darstellen. Der Anteil der AGN mit $M_B \leq -23$ am gesamten BSC-AGN-Datensatz mit rot schraffiert. In (d) sind Quasare ($M_B \leq -23$, rot) und Seyfert-Galaxien ($M_B > -23$, schwarz) farblich getrennt. In (a) bis (c) sind die Verteilungen von Elvis et al. (1994) blau schraffiert.

et al. (1994) sind somit sind im Schnitt optisch, absolut hellere AGN, gegenüber dem BSC-AGN-Datensatz verwendet worden.

Zu den meisten AGN gibt es explizit eine Klassifikation bei NED und im Véron-Katalog. Diese Klassifikation basiert auf einer spektroskopischen Untersuchung des AGN. Hierbei lassen sich 2 Gruppen von AGN bilden. Angelehnt an die bei Seyfert-Galaxien übliche Klassifikation sind in der Spalte "ClsVer" in Tabelle A.3 die Klassifikationen S1, S1.0, S1.2, S1.5, S1.8, S1.9, S1n, S2 und NLSy1 angegeben (Sx(.x) entspricht Seyfert-x(.x)-Galaxie), unabhängig welche Leuchtkraft der AGN hat. In Véron-Katalog (Véron-Cetty & Véron 2001) sind N = 208 AGN klassifizert. Die übrigen N = 45 AGN besitzten die unspezifizierte Klassifikation als Quasar.

Die schon in Kapitel 2.1 erwähnte willkürliche Trennung von Quasaren und Seyfert-Galaxien durch die Wahl einer Grenze bei $M_B = -21.5 + 5 \log(h_0)$, lässt sich in der Abbildung 5.1(c) und 5.1(d) wiederfinden. Die Quasare des BSC-AGN-Datensatzes besitzen alle definitionsgemäß eine absolute Helligkeit $M_B \leq -23$. In der Rotver-

(a) Rotverschiebung $z \leq 1.2$ in Abhängigkeit der Radiolautstärke R

Abbildung 5.2: In den beiden Verteilungen der Radiolautstärke R sind die AGN mit bekanntem Radiofluss (schwarz) und die AGN mit einer oberen Grenze im Radiofluss (rot) dargestellt. In der linken Grafik ist außerdem zwischen Seyfert-Galaxien ($M_B >$ -23, Δ) und Quasaren ($M_B \leq -23$, \Box) unterschieden worden, sowie die AGN mit einer oberen Grenze im Radiofluss sind durch ein \leftarrow] gekennzeichnet.

schiebungsverteilung (Abb. 5.1(a)) sind die Seyfert-Galaxien nur bis etwas z = 0.15 zu finden, hingegen die Quasaren reichen bis zu Rotverschiebungen von z = 2.17. In der Verteilung der scheinbaren Helligkeit B (Abb. 5.1(b)) sind die Quasare nicht so deutlich von den Seyfert-Galaxien getrennt.

Die in der Arbeit von Elvis et al. (1994) verwendeten AGN sind mit dem Anteil der Quasare ($M_B \leq -23$) im BSC-AGN-Datensatz vergleichbar (Abb. 5.1(c)). Es kann zusammenfassend festgestellt werden, dass die AGN in der Arbeit von Elvis et al. (1994) mit den AGN des BSC-AGN-Datensatzes bezüglich der scheinbaren Helligkeiten und der Rotverschiebung vergleichbar sind, jedoch der BSC-AGN-Datensatz einen größeren Anteil optisch, absolut schwächerer AGN besitzt.

5.2.2 Radiolaute und radioleise AGN

Für die Beschreibung der Eigenschaften der AGN im Radiobereich (bei 5 GHz) wird häufig eine Trennung in ,radiolaute' und ,radioleise' AGN vorgenommen. Der NVSS wurde nicht bei $\nu = 5$ GHz sondern bei $\nu = 1.4$ GHz gemessen. Daher muss zur Bestimmung der Radiolautstärke $R = F_{5 \text{ GHz}}/F_B$ der Fluss $F_{1.4 \text{ GHz}}$, unter der Annahme eines mittlere Spektralindex $\alpha_r = -0.5$ (Wu & Han 2001; Zickgraf et al. 2003) mit $\alpha_r = 1.81 \log(F_{5 \text{ GHz}}/F_{1.4 \text{ GHz}})$, auf den 5 GHz-Fluss umgerechnet werden. Von den N = 253 AGN wurden für N = 125 AGN Einträge beim NVSS gefunden. Bei den restlichen N = 128 AGN ist eine obere Grenze von 2.5 mJy beim Radiofluss angenommen worden (Condon et al. 1998; Zickgraf et al. 2003). Bei der Bestimmung der Radiolautstärke R werden die AGN mit oberer Grenze im Radiofluss entsprechend gekennzeichnet. Die B-Helligkeiten stammen aus Tabelle A.3, sowie die Radioflüsse der Tabelle A.11. In Spalte "R" der Tabelle A.11 sind die Radiolautstärken der BSC-AGN-Objekte zu finden. Von den nachgewiesenen AGN besitzen N = 37 AGN ein $R \geq 10$ und werden daher als ,radiolaut' bezeichnet, entsprechend N = 88 AGN als ,radioleise'. Der Hauptteil der AGN kennzeichnet sich durch eine Radiolautstärke R < 2, dies schließt auch die AGN mit einer oberen Grenze im Radiofluss ein.

Unterscheidet man nach Seyfert-Galaxien und Quasaren, so erhält man keine wesentliche Änderung in der Verteilung der Radiolautstärke. Sowohl die Seyfert-Galaxien als auch die Quasare des BSC-AGN-Datensatzes sind ,radiolaut' und ,radioleise'. In Abbildung 5.2 sind die Radioeigenschaften der BSC-AGN-Objekte dargestellt. Eine echte Zweiteilung von ,radiolauten' und ,radioleisen' AGN ist in der Darstellung jedoch nicht zu erkennen. In einigen Arbeiten mit radioselektierten AGN wird die Bimodalität in der Verteilung von R in Frage gestellt (Wadadekar & Kembhavi 1999; White et al. 2000). Die Verteilung des BSC-AGN-Datensatzes zeigt eine Bimodalität, die mit zunehmender Rotverschiebung deutlicher hervortritt.

5.2.3 Bestimmung der Leuchtkraft

Aus den gegebenen Helligkeiten $(B, V, J, H \text{ und } K_s)$ lassen sich Flüsse F der BSC-AGN-Objekte berechnen, und aus diesen Flüssen F dann Leuchtkräfte L. Damit sind nun alle wichtigen Größen der AGN bekannt und es können die Fragestellungen dieser Arbeit angegangen werden. Die Darstellung der Datenpunkte in der SED wird häufig in Diagrammen mit Achsen $\log \nu F_{\nu}$ oder $\log \nu L_{\nu}$ gegen $\log \nu$ vorgenommen. Daher sind die Flüsse und Leuchtkräften mit den Frequenzen des jeweiligen Bandes zu multiplizieren. Ich verwende dafür in den Bändern die folgenden Frequenzen:

J bei 1.24 $\mu {\rm m}$ entspricht $\nu = 2.4177 \cdot 10^{14} \ {\rm Hz}$

H bei 1.66 $\mu {\rm m}$ entspricht $\nu = 1.8060 \cdot 10^{14} \; {\rm Hz}$

 K_s bei 2.16 $\mu{\rm m}$ entspricht $\nu = 1.3879\cdot 10^{14}~{\rm Hz}$

Bbei 4400 Å entspricht $\nu=6.8135\cdot10^{14}~{\rm Hz}$ Vbei 5483 Å entspricht $\nu=5.4676\cdot10^{14}~{\rm Hz}$

Die Radiodaten des NVSS wurden bei $\nu = 1.40 \cdot 10^9$ Hz gemessen. Im Röntgenbereich wurde durch ROSAT in einen Bereich von 0.1 keV bis 2.5 keV gemessen. Der monochromatische Röntgenfluss von Zickgraf et al. (2003) ist bei 2keV oder $\approx 6\text{\AA}$, entsprechend $\nu = 4.8369 \cdot 10^{17}$ Hz, bestimmt worden.

Die Ergebnisse der berechneten Leuchtkräfte sind in der nachfolgenden Tabelle 5.2 zusammengefasst. In dieser Tabelle ist der Logarithmus der Leuchtkraft $(\log \nu L)$ und der Fehler der logarithmischen Leuchtkraft $(d \log \nu L)$ angeben. Der Fehler für die logarithmische Röntgenleuchtkraft beträgt einheitlich für alle BSC-AGN-Objekte $\tilde{\sigma}_{\nu L_{\rm X}} = 0.13$. Dies liegt daran, dass der Fehler des Röntgenflusses mit $\approx 30\%$ angenommen wurde, wie schon im Abschnitt 4.2.1 dargestellt. Es gibt im Radio- und Infrarotbereich bei einigen AGN keine echten Messfehler, sondern angenommene Fehlerwerte, wie in den Abschnitten 4.2.4 und 4.2.3 der einzelnen Frequenzbereiche in Kapitel 4 angesprochen. Diese Werte sind eher als obere Grenzwerte der Fehler für die Leuchtkräfte zu verstehen und stellen keinen richtigen Fehler der Radio- und Infrarotleuchtkräfte des BSC-AGN-Objekts dar. Beim NVSS wurde bei den nicht identifizierten AGN eine obere Grenze von $F = 2.5 \pm 1$ mJy für den Fluss angenommen. Nach den erfolgten Umrechnungen ergibt sich aus der angenommenen oberen Grenze von ± 1 mJy ein Fehler für die logarithmische Leuchtkraft log νL_R mit $\tilde{\sigma}_{\nu L_{\rm ra}} = 0.17$. Dieser Fehler kennzeichnet damit alle AGN mit einer oberen Grenze in der logarithmischen Leuchtkraft.

Im Infraroten gibt der 2MASS-Katalog für einige AGN keine Fehler für die Helligkeiten an. Aus der angenommenen oberen Grenze von $m = \pm 0.5$ mag in Abschnitt 4.2.3 für die Infrarothelligkeit, wird nach den Umrechnungen ein Fehler für die logarithmische Leuchtkraft log νL im Infraroten von $\tilde{\sigma}_{\nu L} = 0.40$. Für die Leuchtkräfte im V-Band sind keine Fehler bestimmt worden, aufgrund fehlender Informationen über Fehler der zugrundeliegenden V-Helligkeiten. Die berechneten Leuchtkräfte der BSC-AGN-Objekte in der Tabelle 5.2 werden im nächsten Kapitel für die Bildung der spektralen Energieverteilung (SED) verwendet.

Tabelle 5.2: Es sind hier die logarithmischen Leuchtkräfte $\log \nu L$ des BSC-AGN-Datensatzes im Radiobereich (Index R), Infraroten (K_s, H und J), Optischen (V, B) und Röntgenbereich (X) mit ihren jeweiligen Fehler zu finden. Ein Punkt vor einigen Einträgen kennzeichnet obere Grenzen für die Infrarotleuchtkräfte.

BSC	Badio	Infrarot		0	Böntgen		
250	$\log \nu L_B$	$\log \nu L_K$	$\log \nu L_H$	$\log \nu L_I$	$\log \nu L_V$	$\log \nu L_B$	$\log \nu L x$
2044	$< 35.18 \pm 0.17$	40.94 ± 0.03	40.98 ± 0.05	41.02 ± 0.04	41.53	42.29 ± 0.01	39.14
2045	$< 35.78 \pm 0.17$	42.03 ± 0.03	42.12 ± 0.05	42.22 ± 0.03	42.61	44.05 ± 0.00	39.74
2046	37.36 ± 0.02	42.05 ± 0.01	42.01 ± 0.02	41.99 ± 0.02	42.14	43.29 ± 0.01	41.11
2047	37.82 ± 0.02	41.96 ± 0.03	42.26 ± 0.02	$.42.59 \pm 0.40$	42.75	43.85 ± 0.00	40.31
2048	38.29 ± 0.01	43.00 ± 0.01	42.91 ± 0.01	42.90 ± 0.01	42.91	43.61 ± 0.01	40.33
2049	37.72 ± 0.02	42.44 ± 0.01	42.48 ± 0.02	42.50 ± 0.01	42.89	43.61 ± 0.01	39.88
2050	38.18 ± 0.02	43.51 ± 0.01	43.48 ± 0.02	43.50 ± 0.02	43.64	44.08 ± 0.00	41.25
2051	37.55 ± 0.05	43.20 ± 0.02	43.37 ± 0.01	43.32 ± 0.02	43.89	44.05 ± 0.07	40.89
2052	38.52 ± 0.01	43.30 ± 0.01	43.19 ± 0.03	43.10 ± 0.03	43.40	43.69 ± 0.07	42.81
2053	$< 37.53 \pm 0.17$	42.82 ± 0.02	42.87 ± 0.03	42.91 ± 0.03	43.23	43.56 ± 0.18	42.47
2054	38.93 ± 0.01	43.31 ± 0.02	43.31 ± 0.04	43.41 ± 0.03	43.98	44.10 ± 0.02	41.55
2055	39.50 ± 0.01	43.99 ± 0.02	43.91 ± 0.02	43.94 ± 0.02	44.07	44.47 ± 0.00	43.06
2056	38.69 ± 0.02	43.85 ± 0.01	43.83 ± 0.01	43.79 ± 0.01	43.70	44.35 ± 0.01	43.17
2057	38.62 ± 0.02	43.32 ± 0.02	43.37 ± 0.03	43.37 ± 0.03	43.48	44.11 ± 0.07	41.42
2058	37.92 ± 0.05	43.36 ± 0.01	43.37 ± 0.03	43.44 ± 0.02	43.48	43.91 ± 0.00	42.54
2059	$<37.82\pm0.17$	42.67 ± 0.04	42.75 ± 0.04	42.82 ± 0.04	43.38	43.53 ± 0.11	43.22
2060	$<37.90\pm0.17$	42.98 ± 0.03	43.00 ± 0.05	43.11 ± 0.03	43.42	43.33 ± 0.11	42.41
2061	40.44 ± 0.01	43.92 ± 0.01	44.06 ± 0.01	44.02 ± 0.01	44.14	44.45 ± 0.07	41.88
2062	38.44 ± 0.03	43.99 ± 0.01	43.82 ± 0.02	43.78 ± 0.01	44.10	44.49 ± 0.07	43.43
2063	38.33 ± 0.04	43.33 ± 0.03	43.34 ± 0.04	43.31 ± 0.04	43.67	44.04 ± 0.04	42.43
2064	38.13 ± 0.05	43.59 ± 0.01	43.68 ± 0.01	43.77 ± 0.01	43.65	44.12 ± 0.07	42.66
2065	40.10 ± 0.01	43.30 ± 0.03	43.40 ± 0.04	43.41 ± 0.04	44.28	44.87 ± 0.01	41.69
2066	40.34 ± 0.02	43.38 ± 0.03	43.46 ± 0.04	43.42 ± 0.03	43.39	43.94 ± 0.11	42.01
2067	$< 38.07 \pm 0.17$	43.80 ± 0.01	43.76 ± 0.02	43.78 ± 0.01	43.81	44.10 ± 0.04	43.19
2068	$< 38.07 \pm 0.17$	43.07 ± 0.02	43.19 ± 0.03	43.21 ± 0.02	43.71	43.62 ± 0.11	42.26
2069	$< 38.10 \pm 0.17$	43.44 ± 0.02	43.47 ± 0.02	43.51 ± 0.02	43.62	43.65 ± 0.19	42.35
2070	38.49 ± 0.04	44.07 ± 0.01	43.95 ± 0.01	43.87 ± 0.01	43.97	44.01 ± 0.11	43.00
2071	39.09 ± 0.01	44.29 ± 0.01	44.16 ± 0.02	44.15 ± 0.02	44.01	44.29 ± 0.04	42.78
2072	38.50 ± 0.04	43.50 ± 0.02	43.53 ± 0.03	43.65 ± 0.02	43.86	44.48 ± 0.02	43.02
2073	38.42 ± 0.04	43.51 ± 0.01	43.50 ± 0.02	43.54 ± 0.01	43.71	43.96 ± 0.11	42.90
2074	38.60 ± 0.03	$.43.36 \pm 0.40$	43.31 ± 0.03	$.43.54 \pm 0.40$	43.81	43.96 ± 0.11	41.86
2075	38.19 ± 0.08	43.19 ± 0.02	43.24 ± 0.02	43.22 ± 0.02	43.41	43.51 ± 0.11	41.72
2076	39.13 ± 0.02	44.25 ± 0.01	44.21 ± 0.01	44.13 ± 0.01	43.90	44.51 ± 0.05	43.43
2077	38.32 ± 0.07	43.68 ± 0.01	43.74 ± 0.02	43.74 ± 0.02	43.61	43.99 ± 0.07	42.86
2078	38.50 ± 0.03	43.60 ± 0.02	43.59 ± 0.02	43.58 ± 0.02	43.68	44.27 ± 0.11	42.76
2079	38.31 ± 0.05	43.41 ± 0.02	43.42 ± 0.03	43.40 ± 0.03	43.67	43.74 ± 0.11	42.32
2080	38.87 ± 0.02	44.10 ± 0.01	43.97 ± 0.02	43.92 ± 0.02	44.34	44.37 ± 0.07	42.00
2081	38.83 ± 0.02	$.43.80 \pm 0.40$	$.43.82 \pm 0.40$	42.93 ± 0.06	44.09	44.37 ± 0.19	43.44
2082	$< 38.21 \pm 0.17$	43.30 ± 0.02	43.24 ± 0.03	43.25 ± 0.04	43.85	44.05 ± 0.07	43.01
2083	$< 38.21 \pm 0.17$	43.71 ± 0.02	43.61 ± 0.02	43.59 ± 0.02	43.20	44.17 ± 0.11	42.34
2084	38.41 ± 0.05	43.55 ± 0.01	43.54 ± 0.02	43.52 ± 0.02	43.32	43.91 ± 0.00	43.11
2085	$< 38.27 \pm 0.17$	43.61 ± 0.01	43.62 ± 0.02	43.61 ± 0.02	43.50	43.62 ± 0.11	43.15
2086	$< 38.27 \pm 0.17$	43.51 ± 0.02	43.68 ± 0.02	43.75 ± 0.02	43.88	44.02 ± 0.11	41.82
2087	38.33 ± 0.06	43.47 ± 0.03	43.52 ± 0.04	43.47 ± 0.04	43.79	44.50 ± 0.07	42.61
2088	38.88 ± 0.02	43.03 ± 0.01	43.50 ± 0.02	43.59 ± 0.02	43.04	43.80 ± 0.04	43.30
2069	$< 30.29 \pm 0.17$	43.39 ± 0.02 42.76 ± 0.01	43.32 ± 0.03	45.01 ± 0.03	45.59	44.20 ± 0.22	42.04
2090	50.09 ± 0.02	43.70 ± 0.01	43.64 ± 0.02	45.00 ± 0.02	44.29	44.46 ± 0.07	42.59
2091	$< 38.29 \pm 0.17$	43.95 ± 0.01	43.92 ± 0.01	43.92 ± 0.01	44.29	44.04 ± 0.11	43.09
2092 2092	30.10 ± 0.03	43.30 ± 0.02 43.38 ± 0.02	43.02 ± 0.02 43.47 ± 0.02	43.04 ± 0.02 43.40 ± 0.02	40.01	43.60 ± 0.11 43.70 ± 0.11	40.21
2095 2004	\sim 30.30 \pm 0.17	43.30 ± 0.02 43.81 ± 0.02	43.47 ± 0.03 43.85 ± 0.02	40.49 ± 0.03 43 80 ± 0.09	40.44 12.04	43.79 ± 0.11	44.01
2094	39.34 ± 0.02	40.01 ± 0.02	43.00 ± 0.03	40.09 ± 0.02	40.94	44.40 ± 0.02	42.00
2090 2006	30.09 ± 0.03	40.44 ± 0.02 43.82 ± 0.02	43.00 ± 0.04 43.76 ± 0.02	43.04 ± 0.03 43.89 ± 0.09	40.00	43.33 ± 0.11 44.96 ± 0.09	42.09
2090	$< 38.42 \pm 0.17$	43.62 ± 0.02 43.65 ± 0.02	43.70 ± 0.03 43.63 ± 0.03	43.62 ± 0.03 13.65 ± 0.02	40.94 /3.60	44.20 ± 0.02 44.02 ± 0.11	42.02
2097	$\sqrt{30.42} \pm 0.17$	43.00 ± 0.02	43.03 ± 0.03 43.57 ± 0.03	$\pm 3.03 \pm 0.03$ 43.61 ± 0.01	40.09 /3.09	44.02 ± 0.11 13.04 \pm 0.11	43.20
2090	33.43 ± 0.02 38 57 \pm 0.06	43.00 ± 0.01	43.86 ± 0.02	43.01 ± 0.01	40.90 /3.00	40.34 ± 0.11	40.00 19.64
2100	$< 38.44 \pm 0.00$	43.66 ± 0.02	43.73 ± 0.02	43.77 ± 0.02	43 77	44.24 ± 0.11	43 30
2100	$< 00.44 \pm 0.11$	10.00 ± 0.01	10.10 ± 0.02	10.11 ± 0.02	10.11	17.27 ± 0.11	10.00

Fortsetzung nächste Seite

Fortset	tzung von vorherig	ger Seite					
BSC	Radio	logu	Infrarot	loguL	(Dptisch	Röntgen
2101	$\frac{109 \nu L_R}{38.63 \pm 0.06}$	$\frac{100 \nu L_{K_s}}{43.61 \pm 0.02}$	$\frac{100 \nu L_H}{43.56 \pm 0.02}$	$\frac{100 \nu L J}{43.59 \pm 0.02}$	44.01	$\frac{10g \nu LB}{43.96 \pm 0.11}$	43.21
2102	38.86 ± 0.04	43.94 ± 0.01	43.88 ± 0.01	43.91 ± 0.01	44.12	44.20 ± 0.11	43.17
2103	$< 38.48 \pm 0.17$	43.63 ± 0.01	43.62 ± 0.02	43.60 ± 0.02	43.80	44.00 ± 0.02	43.44
2104	38.61 ± 0.05	44.02 ± 0.01	44.07 ± 0.02	44.05 ± 0.02	44.16	44.37 ± 0.08	43.04
2105	38.50 ± 0.08	43.71 ± 0.01	43.72 ± 0.02	43.71 ± 0.02	44.07	44.31 ± 0.11	42.94
2106	38.64 ± 0.07	43.95 ± 0.01	43.94 ± 0.02	43.97 ± 0.02	44.20	44.51 ± 0.06	43.12
2107	$< 38.59 \pm 0.17$ $< 38.64 \pm 0.17$	43.42 ± 0.03 43.76 ± 0.02	43.41 ± 0.03 43.82 ± 0.03	43.42 ± 0.04 43.84 ± 0.02	43.75	43.98 ± 0.11 44.23 ± 0.11	43.33
2108	$< 38.64 \pm 0.17$ $< 38.66 \pm 0.17$	43.70 ± 0.02 43.93 ± 0.01	43.82 ± 0.03 43.97 ± 0.02	43.84 ± 0.02 44.00 ± 0.02	43.92 44.03	44.23 ± 0.11 44.29 ± 0.11	43.02 42.55
2110	40.01 ± 0.01	43.62 ± 0.05	43.63 ± 0.06	43.72 ± 0.06	45.32	44.87 ± 0.19	42.69
2111	38.80 ± 0.06	43.97 ± 0.01	43.95 ± 0.01	43.93 ± 0.01	44.13	44.24 ± 0.11	43.24
2112	$< 38.73 \pm 0.17$	43.61 ± 0.01	43.64 ± 0.01	43.62 ± 0.02	43.85	44.24 ± 0.11	43.19
2113	39.27 ± 0.03	44.83 ± 0.01	44.66 ± 0.02	44.59 ± 0.01	44.78	44.94 ± 0.11	43.80
2115	$< 38.76 \pm 0.17$	43.78 ± 0.01	43.72 ± 0.01	43.70 ± 0.01	44.24	44.19 ± 0.11	43.22
$2110 \\ 2117$	$< 38.78 \pm 0.17$ $< 38.78 \pm 0.17$	43.95 ± 0.01 43.56 ± 0.03	43.88 ± 0.02 43.67 ± 0.03	43.93 ± 0.02 43.74 ± 0.03	44.17	44.37 ± 0.11 44.13 ± 0.11	43.50
2117	$< 39.78 \pm 0.17$ 39.03 ± 0.05	43.30 ± 0.03 43.82 ± 0.02	43.07 ± 0.03 43.76 ± 0.02	43.74 ± 0.03 43.80 ± 0.02	44.23	44.13 ± 0.11 44.57 ± 0.19	43.14 43.86
2110	38.84 ± 0.06	49.02 ± 0.02 44.15 ± 0.02	43.10 ± 0.02 44.07 ± 0.02	40.00 ± 0.02 44.07 ± 0.02	44.36	44.66 ± 0.11	43.46
2120	$< 38.79 \pm 0.17$	43.68 ± 0.02	43.59 ± 0.02	43.67 ± 0.02	44.01	44.26 ± 0.19	43.49
2121	$< 38.79 \pm 0.17$	44.21 ± 0.01	44.18 ± 0.01	44.25 ± 0.01	44.65	44.74 ± 0.11	43.56
2122	39.14 ± 0.03	44.14 ± 0.01	44.17 ± 0.01	44.18 ± 0.01	43.99	44.46 ± 0.27	43.07
2123	$< 38.80 \pm 0.17$	$.44.18 \pm 0.40$	$.44.27 \pm 0.40$	43.57 ± 0.04	44.25	44.31 ± 0.11	43.50
2124	39.10 ± 0.04	43.97 ± 0.01	43.88 ± 0.02	43.89 ± 0.02	44.12	44.27 ± 0.11	42.98
2120 2126	38.88 ± 0.06	44.20 ± 0.01 43.02 ± 0.01	44.10 ± 0.01 43.82 ± 0.02	44.17 ± 0.01 43.80 ± 0.01	44.59 44.19	44.79 ± 0.11 44.27 ± 0.11	43.00
2120 2127	$< 38.80 \pm 0.17$ 38.82 ± 0.09	43.89 ± 0.02	43.91 ± 0.02	43.80 ± 0.01 43.87 ± 0.02	44.12	44.27 ± 0.11 44.37 ± 0.11	42.88
2121	$< 38.83 \pm 0.17$	43.87 ± 0.02	43.90 ± 0.03	43.91 ± 0.03	44.11	44.26 ± 0.11	42.91
2129	39.95 ± 0.01	43.86 ± 0.01	43.81 ± 0.02	43.86 ± 0.01	44.21	44.30 ± 0.11	43.15
2130	$< 38.86 \pm 0.17$	43.61 ± 0.02	43.62 ± 0.02	43.70 ± 0.02	43.97	44.28 ± 0.11	42.64
2131	$< 38.86 \pm 0.17$	43.87 ± 0.02	43.86 ± 0.02	43.90 ± 0.02	44.25	44.32 ± 0.11	43.15
2132	38.89 ± 0.08	44.19 ± 0.02	44.10 ± 0.03	44.05 ± 0.03	44.25	44.72 ± 0.27	43.45
2133 2134	40.38 ± 0.01 38.02 ± 0.06	44.06 ± 0.02 43.80 ± 0.02	44.05 ± 0.02 43.84 ± 0.02	44.08 ± 0.02 43.82 ± 0.02	44.23	44.42 ± 0.11 44.34 ± 0.11	43.39
$\frac{2134}{2135}$	$< 38.89 \pm 0.17$	43.89 ± 0.02 44.53 ± 0.01	43.84 ± 0.02 44.40 ± 0.01	43.82 ± 0.02 44.33 ± 0.01	43.82 44.53	44.34 ± 0.11 44.72 ± 0.11	43.74
2136	39.29 ± 0.03	43.94 ± 0.02	43.96 ± 0.02	43.94 ± 0.02	44.29	44.48 ± 0.11	43.01
2137	$< 38.92 \pm 0.17$	43.98 ± 0.02	43.96 ± 0.03	43.94 ± 0.02	44.19	44.35 ± 0.11	42.69
2138	$< 38.93 \pm 0.17$	43.76 ± 0.01	43.73 ± 0.02	43.77 ± 0.02	44.20	44.32 ± 0.11	43.43
2139	39.01 ± 0.07	43.94 ± 0.02	43.94 ± 0.03	43.98 ± 0.02	43.88	44.52 ± 0.11	43.17
2140	$< 38.94 \pm 0.17$	43.81 ± 0.02	43.82 ± 0.02	43.81 ± 0.02	44.15	44.41 ± 0.11	43.10
$2141 \\ 2142$	39.00 ± 0.06 30.27 ± 0.03	43.01 ± 0.02 44.74 ± 0.01	43.61 ± 0.03 44.65 ± 0.01	43.67 ± 0.02 44.50 ± 0.01	44.39 44.78	44.54 ± 0.11 44.08 ± 0.04	42.83
2142 2143	$< 38.96 \pm 0.17$	44.14 ± 0.01 44.16 ± 0.01	44.03 ± 0.01 44.11 ± 0.01	44.09 ± 0.01 44.08 ± 0.01	44.32	44.30 ± 0.04 44.47 ± 0.11	43.36
2144	39.31 ± 0.04	44.27 ± 0.02	44.13 ± 0.04	44.16 ± 0.03	44.36	44.59 ± 0.02	43.53
2145	$< 38.97 \pm 0.17$	44.13 ± 0.01	44.05 ± 0.01	44.06 ± 0.01	44.87	45.08 ± 0.11	43.89
2146	$< 38.98 \pm 0.17$	44.68 ± 0.01	44.56 ± 0.01	44.53 ± 0.01	44.99	45.17 ± 0.11	44.14
2147	$< 38.99 \pm 0.17$	44.08 ± 0.01	44.07 ± 0.02	44.06 ± 0.01	44.39	44.38 ± 0.12	43.23
2148	$< 38.99 \pm 0.17$	44.07 ± 0.02	44.03 ± 0.03	44.03 ± 0.02	44.27	44.34 ± 0.12	43.32
2149	$< 38.99 \pm 0.17$	43.96 ± 0.01	43.91 ± 0.02	43.94 ± 0.02	44.19	44.34 ± 0.12	43.23
2150 2151	$< 39.02 \pm 0.17$ $< 39.02 \pm 0.17$	43.81 ± 0.02 44.08 ± 0.02	43.73 ± 0.03 44.00 ± 0.02	43.73 ± 0.02 44.05 ± 0.02	43.80 44.49	44.40 ± 0.12 44.76 ± 0.12	43.03 43.46
2151 2152	$< 39.02 \pm 0.17$ $< 39.03 \pm 0.17$	44.00 ± 0.02 44.17 ± 0.02	44.00 ± 0.02 44.14 ± 0.03	44.00 ± 0.02 44.17 ± 0.02	44.66	44.33 ± 0.12	43.05
2153	$< 39.03 \pm 0.17$	44.27 ± 0.01	44.13 ± 0.02	44.10 ± 0.02	44.14	44.45 ± 0.12	43.30
2154	39.08 ± 0.08	44.80 ± 0.01	44.67 ± 0.02	44.63 ± 0.01	44.76	44.96 ± 0.12	44.03
2155	$< 39.06 \pm 0.17$	44.34 ± 0.01	44.33 ± 0.02	44.33 ± 0.01	44.39	44.57 ± 0.12	43.73
2157	39.13 ± 0.06	44.54 ± 0.01	44.42 ± 0.02	44.37 ± 0.02	44.51	44.64 ± 0.12	43.11
2158	39.62 ± 0.03	44.16 ± 0.01	44.06 ± 0.02	44.07 ± 0.01	44.26	44.49 ± 0.12	43.81
2109 2160	$< 39.11 \pm 0.17$ $< 39.12 \pm 0.17$	44.16 ± 0.01 44.06 ± 0.01	44.15 ± 0.02 44.31 ± 0.01	44.12 ± 0.01 44.50 ± 0.01	44.30 44.38	44.45 ± 0.12 44.99 ± 0.12	43.19 43.04
2100 2161	$< 39.12 \pm 0.17$ $< 39.12 \pm 0.17$	44.07 ± 0.02	44.06 ± 0.02	44.07 ± 0.02	44.40	44.33 ± 0.12 44.47 ± 0.12	42.80
2162	$< 39.14 \pm 0.17$	44.10 ± 0.02	44.17 ± 0.02	44.15 ± 0.02	44.54	44.57 ± 0.12	42.63
2163	$< 39.16 \pm 0.17$	44.15 ± 0.02	44.08 ± 0.02	44.16 ± 0.02	44.64	44.79 ± 0.12	43.35
2164	39.21 ± 0.08	44.11 ± 0.01	44.02 ± 0.02	44.03 ± 0.02	44.63	44.79 ± 0.12	43.72
2165	39.88 ± 0.03	44.41 ± 0.01	44.30 ± 0.01	44.22 ± 0.01	44.28	44.60 ± 0.12	43.06
2166	39.48 ± 0.03	44.07 ± 0.01	43.98 ± 0.01	44.02 ± 0.01	44.31	44.80 ± 0.12	43.77
2107 2169	39.30 ± 0.05 30.10 \pm 0.07	40.00 ± 0.01 44.51 ± 0.01	44.02 ± 0.01 44.37 ± 0.01	44.78 ± 0.01 44.20 ± 0.01	44.90 11 19	40.33 ± 0.12 44.71 ± 0.12	44.52 42.29
2100 2169	39.19 ± 0.07 39.66 ± 0.03	44.31 ± 0.01	44.33 ± 0.01	44.41 ± 0.01	44.457	44.61 ± 0.12	43.08
2130 2170	40.02 ± 0.03	$.44.34 \pm 0.40$	$.44.43 \pm 0.40$	44.17 ± 0.04	44.42	44.58 ± 0.12	43.48
2171	40.13 ± 0.02	45.23 ± 0.01	45.00 ± 0.01	44.91 ± 0.01	45.03	45.54 ± 0.12	44.37
2172	$< 39.24 \pm 0.17$	44.27 ± 0.02	44.20 ± 0.03	44.17 ± 0.02	44.64	44.63 ± 0.12	43.87
2173	$< 39.25 \pm 0.17$	44.08 ± 0.02	44.13 ± 0.03	44.07 ± 0.02	44.09	44.60 ± 0.12	43.61

BSC Radio Intract OperAt Regular, Boy L, Dev L, De	Fortsetzung von vorheriger Seite							
$ \begin{array}{c} 1174 & 33.3 \pm 0.07 & 14.6 \pm 0.01 & 44.3 \pm 0.01 & 44.37 \pm 0.01 & 44.63 & 4.82 \pm 0.12 & 43.87 \\ 12176 & (39.29 \pm 0.17 & 41.55 \pm 0.01 & 44.69 \pm 0.01 & 44.49 \pm 0.01 & 44.39 & 40.97 & 44.97 \pm 0.12 & 43.86 \\ 12178 & (39.42 \pm 0.17 & 41.35 \pm 0.01 & 44.69 \pm 0.02 & 44.59 & 40.01 & 44.50 & 45.21 \pm 0.12 & 43.56 \\ 12178 & (39.42 \pm 0.17 & 44.38 \pm 0.01 & 44.38 \pm 0.01 & 44.38 \pm 0.01 & 44.33 & 44.71 \pm 0.12 & 43.86 \\ 12179 & (39.32 \pm 0.17 & 44.48 \pm 0.01 & 44.38 \pm 0.01 & 44.38 \pm 0.01 & 44.53 & 44.71 \pm 0.12 & 43.86 \\ 12180 & (39.3 \pm 0.07 & 44.48 \pm 0.01 & 44.38 \pm 0.02 & 44.91 \pm 0.02 & 44.53 \\ 12181 & (39.3 \pm 0.06 & 44.27 \pm 0.02 & 44.28 \pm 0.02 & 44.50 & 40.22 & 44.50 \\ 12183 & (39.3 \pm 0.06 & 44.27 \pm 0.02 & 44.28 \pm 0.02 & 44.49 & 40.81 & 44.88 \pm 0.12 & 43.88 \\ 12183 & (39.41 \pm 0.01 & 44.38 \pm 0.02 & 44.94 \pm 0.02 & 44.40 & 44.88 \pm 0.12 & 43.38 \\ 12183 & (39.41 \pm 0.01 & 44.38 \pm 0.02 & 44.28 \pm 0.02 & 44.40 & 44.88 \pm 0.12 & 43.34 \\ 12184 & 38.05 \pm 0.06 & 44.28 \pm 0.02 & 44.28 \pm 0.02 & 44.40 & 44.88 \pm 0.12 & 43.38 \\ 12185 & 38.05 \pm 0.06 & 44.38 \pm 0.02 & 44.64 \pm 0.01 & 44.64 \pm 0.01 & 44.38 \pm 0.12 & 43.38 \\ 12185 & 38.94 \pm 0.07 & 44.78 \pm 0.02 & 44.64 \pm 0.01 & 44.64 \pm 0.01 & 44.37 & 40.18 & 44.92 \pm 0.12 & 43.87 \\ 12186 & (39.41 \pm 0.07 & 44.78 \pm 0.01 & 44.61 \pm 0.02 & 44.64 \pm 0.01 & 44.61 \pm 0.01 & 44.51 \\ 12186 & (39.41 \pm 0.07 & 44.78 \pm 0.01 & 44.61 \pm 0.02 & 44.61 \pm 0.01 & 44.50 & 40.18 \pm 40.91 \pm 0.12 & 43.87 \\ 12197 & (39.41 \pm 0.07 & 44.78 \pm 0.01 & 44.78 \pm 0.01 & 44.77 & 44.88 \pm 0.12 & 43.87 \\ 12198 & (39.64 \pm 0.07 & 44.81 \pm 0.01 & 44.77 \pm 0.03 & 44.77 & 40.38 & 40.91 \pm 0.12 & 43.81 \\ 12194 & 0.21 \pm 0.02 & 44.21 \pm 0.02 & 44.21 \pm 0.02 & 44.51 & 40.14 & 44.50 & 40.11 & 44.50 \\ 12194 & 0.21 \pm 0.02 & 44.61 \pm 0.01 & 44.77 \pm 0.01 & 44.77 & 40.88 \pm 0.01 & 44.77 & 44.38 \pm 0.01 & 44.72 & 45.31 & 45.01 \pm 24.32 \\ 12193 & 39.95 \pm 0.07 & 44.81 \pm 0.01 & 44.72 \pm 0.02 & 44.81 \pm 0.01 & 44.50 & 40.11 & 44.31 \\ 12194 & 0.21 \pm 0.02 & 44.31 \pm 0.01 & 44.72 \pm 0.02 & 44.81 \pm 0.01 & 44.50 & 40.11 & 44.31 \\ 12194 & 0.21 \pm 0.02 & 44.31 \pm 0.01 & 44.72 \pm 0.02 & 44.$	BSC	Radio	loguLr	Infrarot	$\log \mu L_{A}$	$\log \nu L_{V}$) ptisch $\log \nu L_{\rm P}$	Röntgen log <i>uLx</i>
$ \begin{array}{c} 2175 & < 39.29 \pm 0.17 & 44.51 \pm 0.01 & 44.39 \pm 0.01 & 44.47 & 44.96 \pm 0.12 & 43.36 \\ 2177 & 39.40 \pm 0.04 & 44.75 \pm 0.01 & 44.69 \pm 0.01 & 44.46 \pm 0.01 & 44.96 & 44.99 \pm 0.12 & 43.36 \\ 2178 & < 39.32 \pm 0.17 & 44.32 \pm 0.01 & 44.38 \pm 0.02 & 44.35 \pm 0.02 & 44.35 \\ 2180 & < 39.32 \pm 0.17 & 44.32 \pm 0.01 & 44.38 \pm 0.01 & 44.37 \pm 0.01 & 44.64 & 44.99 \pm 0.12 & 43.36 \\ 2181 & 39.43 \pm 0.06 & 44.37 \pm 0.02 & 44.32 \pm 0.01 & 44.37 \pm 0.01 & 44.38 \pm 0.12 & 43.38 \\ 2182 & 39.95 \pm 0.06 & 45.00 \pm 0.01 & 44.38 \pm 0.02 & 44.30 \pm 0.01 & 44.77 & 45.88 \pm 0.12 & 44.38 \\ 2183 & 39.43 \pm 0.06 & 44.37 \pm 0.02 & 44.28 \pm 0.02 & 44.29 \pm 0.02 & 44.44 & 44.88 \pm 0.12 & 44.38 \\ 2184 & 39.62 \pm 0.06 & 44.11 \pm 0.02 & 44.18 \pm 0.02 & 44.49 \pm 0.01 & 44.78 & 45.88 \pm 0.12 & 44.38 \\ 2184 & 39.62 \pm 0.06 & 44.11 \pm 0.02 & 44.68 \pm 0.02 & 44.09 \pm 0.01 & 44.78 & 45.88 \pm 0.12 & 44.38 \\ 2185 & 39.62 \pm 0.06 & 44.11 \pm 0.02 & 44.68 \pm 0.02 & 44.09 \pm 0.03 & 44.78 & 45.16 \pm 0.12 & 44.37 \\ 2186 & 39.04 \pm 0.03 & 44.18 \pm 0.01 & 44.69 \pm 0.01 & 44.78 & 40.18 & 44.18 \pm 0.12 & 44.37 \\ 2186 & 39.04 \pm 0.03 & 44.18 \pm 0.01 & 44.69 \pm 0.01 & 44.78 & 40.18 & 44.18 & 40.10 & 24.37 \\ 2198 & 39.45 \pm 0.01 & 44.48 \pm 0.01 & 44.77 \pm 0.01 & 44.78 & 40.10 & 44.77 & 40.88 \pm 0.12 & 43.87 \\ 2198 & 39.45 \pm 0.01 & 44.78 \pm 0.01 & 44.77 \pm 0.01 & 44.57 & 40.01 & 44.77 & 44.88 \pm 0.12 & 43.87 \\ 2198 & 39.45 \pm 0.01 & 44.78 \pm 0.01 & 44.72 \pm 0.02 & 44.38 \pm 0.01 & 45.16 & 44.98 \pm 0.12 & 43.87 \\ 2198 & 39.62 \pm 0.03 & 44.18 \pm 0.01 & 44.72 \pm 0.02 & 44.88 \pm 0.01 & 44.77 & 44.88 \pm 0.12 & 43.87 \\ 2198 & 39.86 \pm 0.01 & 44.18 \pm 0.01 & 44.72 \pm 0.01 & 44.28 \pm 0.01 & 44.77 & 44.88 \pm 0.12 & 43.87 \\ 2198 & 39.86 \pm 0.01 & 44.88 \pm 0.01 & 44.72 \pm 0.02 & 44.88 \pm 0.01 & 45.12 & 43.81 \\ 2199 & 59.85 \pm 0.01 & 44.81 \pm 0.01 & 44.85 \pm 0.01 & 44.72 & 45.14 & 45.14 \\ 2198 & 59.86 \pm 0.17 & 44.81 \pm 0.01 & 44.85 \pm 0.01 & 44.72 & 45.14 & 45.14 & 45.14 & 45.14 & 45.14 & 44.1$	2174	$\frac{10 \text{g} \nu D_R}{39.35 \pm 0.07}$	44.64 ± 0.01	44.53 ± 0.01	44.47 ± 0.01	44.66	44.82 ± 0.12	43.77
$ \begin{array}{c} 2177 \\ 2$	2175	$< 39.29 \pm 0.17$	44.51 ± 0.01	44.34 ± 0.01	44.33 ± 0.01	44.77	44.96 ± 0.12	43.64
$ \begin{array}{c} 2177 & 39.64 \pm 0.04 & 44.75 \pm 0.01 & 44.62 \pm 0.02 & 44.59 \pm 0.01 & 45.08 & 45.21 \pm 0.12 & 43.79 \\ 2178 & (39.32 \pm 0.17 & 44.42 \pm 0.01 & 44.38 \pm 0.01 & 44.37 \pm 0.01 & 44.64 & 44.92 \pm 0.12 & 43.86 \\ 2180 & (39.35 \pm 0.17 & 44.42 \pm 0.01 & 44.38 \pm 0.01 & 44.37 \pm 0.01 & 44.63 & 44.92 \pm 0.12 & 43.86 \\ 2181 & 39.43 \pm 0.06 & 44.37 \pm 0.02 & 44.25 \pm 0.02 & 44.30 \pm 0.01 & 44.77 & 44.88 \pm 0.12 & 43.86 \\ 2182 & 39.91 \pm 0.06 & 45.00 \pm 0.01 & 44.88 \pm 0.02 & 44.90 \pm 0.01 & 44.78 & 45.38 \pm 0.12 & 43.84 \\ 2184 & 39.55 \pm 0.06 & 44.38 \pm 0.02 & 44.20 \pm 0.02 & 44.20 \pm 0.02 & 44.44 & 44.88 \pm 0.12 & 43.84 \\ 2186 & 39.02 \pm 0.06 & 44.11 \pm 0.02 & 44.08 \pm 0.02 & 44.00 \pm 0.01 & 44.78 & 45.38 \pm 0.12 & 43.38 \\ 2186 & 39.02 \pm 0.06 & 44.11 \pm 0.02 & 44.08 \pm 0.02 & 44.04 \pm 0.01 & 44.78 & 45.18 \pm 0.12 & 43.85 \\ 2186 & 39.02 \pm 0.06 & 44.11 \pm 0.02 & 44.08 \pm 0.02 & 44.04 \pm 0.01 & 44.78 & 45.18 \pm 0.12 & 43.87 \\ 2188 & (39.41 \pm 0.01 & 44.87 \pm 0.01 & 44.78 \pm 0.01 & 44.78 & 45.18 \pm 0.12 & 43.87 \\ 2190 & (39.34 \pm 0.00 & 44.81 \pm 0.01 & 44.67 \pm 0.01 & 44.77 & 46.18 & 44.99 \pm 0.12 & 43.87 \\ 2191 & 39.35 \pm 0.10 & 44.81 \pm 0.01 & 44.78 \pm 0.01 & 44.47 \pm 0.01 & 44.77 & 46.38 \pm 0.12 & 43.86 \\ 2192 & 38.02 \pm 0.00 & 44.81 \pm 0.01 & 44.72 \pm 0.03 & 44.18 \pm 0.01 & 44.77 & 44.38 \pm 0.12 & 43.36 \\ 2194 & 39.35 \pm 0.01 & 44.81 \pm 0.01 & 44.72 \pm 0.02 & 44.85 \pm 0.01 & 44.17 & 44.38 \pm 0.12 & 43.36 \\ 2194 & 39.5 \pm 0.03 & 44.81 \pm 0.01 & 44.72 \pm 0.02 & 44.85 \pm 0.01 & 44.17 & 45.38 \pm 0.12 & 43.85 \\ 2194 & 39.5 \pm 0.07 & 44.81 \pm 0.01 & 44.72 \pm 0.02 & 44.58 \pm 0.01 & 44.51 & 44.91 & 44.31 \pm 0.12 & 44.38 \\ 2194 & (39.65 \pm 0.17 & 44.18 \pm 0.01 & 44.72 \pm 0.01 & 44.75 \pm 0.01 & 44.52 \pm 0.12 & 43.85 \\ 2194 & (39.65 \pm 0.17 & 44.84 \pm 0.01 & 44.75 \pm 0.01 & 44.75 \pm 0.01 & 44.75 \pm 0.01 & 44.85 \pm $	2176	$< 39.29 \pm 0.17$	44.58 ± 0.01	44.49 ± 0.01	44.44 ± 0.01	44.99	44.92 ± 0.12	43.76
$\begin{array}{c} 2178 &< 39.32 \pm 0.17 & 44.33 \pm 0.01 & 44.16 \pm 0.02 & 44.13 \pm 0.02 & 44.53 & 44.71 \pm 0.12 & 43.71 \\ 2180 &< 39.35 \pm 0.17 & 44.48 \pm 0.01 & 44.38 \pm 0.01 & 44.38 \pm 0.01 & 44.53 & 44.74 \pm 0.01 & 43.78 \\ 2181 && 39.35 \pm 0.06 & 45.77 \pm 0.02 & 44.25 \pm 0.02 & 44.09 \pm 0.01 & 44.78 & 45.38 \pm 0.01 & 44.33 \\ 2182 && 39.69 \pm 0.06 & 44.71 \pm 0.02 & 44.28 \pm 0.02 & 44.29 \pm 0.02 & 44.28 \pm 0.02 & 44.38 \pm 0.12 & 43.82 \\ 2183 && 39.91 \pm 0.01 & 44.55 \pm 0.01 & 44.61 \pm 0.01 & 44.77 \pm 0.01 & 44.78 \pm 0.12 & 43.85 \\ 2198 &< 33.38 \pm 0.01 & 44.81 \pm 0.01 & 44.74 \pm 0.01 & 44.77 \pm 0.01 & 44.77 & 45.98 \pm 0.12 & 43.85 \\ 2193 && 30.35 \pm 0.06 & 44.70 \pm 0.01 & 44.55 \pm 0.01 & 44.48 \pm 0.01 & 44.77 & 45.38 \pm 0.12 & 43.86 \\ 2192 && 39.64 \pm 0.06 & 44.70 \pm 0.01 & 44.55 \pm 0.01 & 44.48 \pm 0.01 & 44.72 & 45.39 & 0.12 & 43.86 \\ 2193 && 30.95 \pm 0.03 & 44.81 \pm 0.01 & 44.72 \pm 0.02 & 44.83 \pm 0.01 & 45.01 & 14.23 & 50.2 \\ 2193 && 30.55 \pm 0.17 & 44.48 \pm 0.01 & 44.72 \pm 0.02 & 44.38 \pm 0.01 & 45.01 & 14.24 & 30.7 \\ 2194 && 0.21 \pm 0.02 & 44.75 \pm 0.01 & 44.47 \pm 0.02 & 44.55 \pm 0.01 & 44.25 & 45.38 \pm 0.12 & 44.48 \\ 2199 && (33.65 \pm 0.17 & 44.48 \pm 0.01 & 44.72 \pm 0.02 & 44.38 \pm 0.01 & 45.10 \pm 0.12 & 44.32 \\ 2204 && (30.65 \pm 0.17 & 44.74 \pm 0.01 & 44.75 \pm 0.01 & 44.65 \pm 0.01 & 44.64 \pm 0.12 & 43.83 \\ 2204 && (30.65 \pm 0.17 & 44.74 \pm 0.01 & 44.75 \pm 0.01 & 44.65 \pm 0.01 & 44.64 \pm 0.12 & 43.28 \\ 2204 && (30.65 \pm 0.17 & 44.74 \pm 0.01 & 44.72 \pm 0.01 & 44.48 \pm 0.01 & 44.58 \pm 0.01 & 44.64 \pm 0.12 & 43.38 \\ 2204 && (30.65 \pm 0.17 & 44.74 \pm 0.01 & 44.72 \pm 0.01 & 44.48 \pm 0.01 & 44.65 \pm 0.01 & 44.51 & 45.14 \pm 0.22 $	2177	39.64 ± 0.04	44.75 ± 0.01	44.62 ± 0.02	44.59 ± 0.01	45.08	45.21 ± 0.12	43.59
$ \begin{array}{c} 2179 \\ < 30.33 \pm 0.17 \\ < 44.22 \pm 0.01 \\ < 44.24 \pm 0.01 \\ < 44.38 \pm 0.02 \\ < 44.78 \\ < 45.38 \pm 0.12 \\ < 44.38 \pm 0.12 \\ < 44.38 \pm 0.02 \\ < 44.78 \\ < 45.88 \pm 0.12 \\ < 44.38 \pm 0.02 \\ < 44.48 \\ < 40.22 \pm 0.02 \\ < 44.44 \\ < 44.85 \pm 0.12 \\ < 44.38 \\ < 40.2 \\ < 44.85 \\ < 10.2 \\ < 44.38 \\ < 10.2 \\ < 44.38 \\ < 10.2 \\ < 44.38 \\ < 10.2 \\ < 44.38 \\ < 10.2 \\ \\ \\ \\ 44.8 \pm 0.02 \\ < 44.48 \\ \\ \\ 44.9 \\ \\ \\ 44.9 \\ \\ \\ 44.9 \\ \\ 44.9 \\ \\ 44.9 \\ \\ \\ 44.9 \\ \\ 44.$	2178	$< 39.32 \pm 0.17$	44.33 ± 0.01	44.16 ± 0.02	44.13 ± 0.02	44.53	44.71 ± 0.12	43.71
$ \begin{array}{c} 2180 \\ 2181 \\ 2182 \\ 2182 \\ 238.34 \pm 0.06 \\ 45.07 \pm 10.27 \\ 45.28 \pm 0.02 \\ 45.28 \pm 0.02 \\ 45.28 \pm 0.01 \\ 44.71 \\ 44.28 \pm 0.02 \\ 44.28 \pm 0.03 \\ 44.28 \pm 0.01 \\ 44.28 \pm 0.02 \\ 44.28 \pm 0.03 \\ 44.28 \pm 0.01 \\ 44.27 \\ 44.28 \pm 0.02 \\ 44.28 \pm 0.01 \\ 44.27 \\ 44.28 \pm 0.01 \\ 44.27 \\ 44.28 \pm 0.02 \\ 44.28 \pm 0.01 \\ 44.27 \\ 45.28 \pm 0.12 \\ 45.28 \\ 1219 \\ 39.87 \pm 0.03 \\ 44.28 \pm 0.01 \\ 44.27 \\ 44.28 \pm 0.01 \\ 44.27 \\ 45.28 \pm 0.12 \\ 45.28 \\ 1219 \\ 39.87 \pm 0.03 \\ 44.28 \pm 0.01 \\ 44.27 \\ 44.28 \pm 0.01 \\ 44.27 \\ 45.28 \\ 1219 \\ 39.87 \pm 0.03 \\ 44.28 \pm 0.01 \\ 44.27 \\ 44.28 \pm 0.01 \\ 44.27 \\ 45.28 \\ 1219 \\ 39.87 \pm 0.03 \\ 44.28 \pm 0.01 \\ 44.27 \\ 44.28 \pm 0.01 \\ 44.27 \\ 45.28 \\ 1219 \\ 39.87 \pm 0.03 \\ 44.28 \pm 0.01 \\ 44.27 \\ 44.28 \pm 0.01 \\ 44.27 \\ 45.28 \\ 15.28 \\ 1212 \\ 43.86 \\ 1219 \\ 43.86 \\ 1219 \\ 43.86 \\ 1219 \\ 43.86 \\ 1219 \\ 43.86 \\ 1219 \\ 43.86 \\ 1219 \\ 43.86 \\ 1219 \\ 43.86 \\ 1219 \\ 43.86 \\ 1219 \\ 43.86 \\ 1219 \\ 43.86 \\ 1219 \\ 44.28 \\ $	2179	$< 39.33 \pm 0.17$	44.42 ± 0.01	44.33 ± 0.01	44.36 ± 0.01	44.64	44.92 ± 0.12	43.26
$\begin{array}{c} 132 \\ 133 \\ 134 \\ 1314 $	2180 2181	$< 39.35 \pm 0.17$ 30.43 ± 0.06	44.48 ± 0.01 44.27 ± 0.02	44.38 ± 0.01 44.25 ± 0.02	44.37 ± 0.01 44.30 ± 0.02	44.53 44.71	44.74 ± 0.12 44.82 ± 0.12	43.58
$ \begin{array}{c} 1818 \\ 2184 \\ 2185 \\ 2185 \\ 2185 \\ 30.62 \pm 0.05 \\ 41.14 \pm 0.20 \\ 41.22 \pm 0.02 \\ 41.22 \pm 0.03 \\ 41.22 \pm 0.03 \\ 41.22 \pm 0.02 \\ 41.22 \pm $	2181	39.43 ± 0.00 39.59 ± 0.06	44.27 ± 0.02 45.00 ± 0.01	44.25 ± 0.02 44.86 ± 0.02	44.30 ± 0.02 44.90 ± 0.01	44.71 44.78	44.82 ± 0.12 45.38 ± 0.12	43.28
$ \begin{array}{c} 1845 & 39.55 \pm 0.06 & 44.28 \pm 0.02 & 44.24 \pm 0.02 & 44.22 \pm 0.02 & 44.20 & 44.83 \pm 0.12 & 43.82 \\ 1286 & 39.04 \pm 0.03 & 44.55 \pm 0.01 & 44.08 \pm 0.02 & 44.04 \pm 0.03 & 44.96 & 44.91 \pm 0.12 & 43.86 \\ 12187 & (33.441 \pm 0.017 & 44.75 \pm 0.01 & 44.08 \pm 0.02 & 44.06 \pm 44.90 & 44.96 & 44.91 \pm 0.12 & 43.87 \\ 12189 & 33.94 \pm 0.017 & 44.32 \pm 0.02 & 44.10 \pm 0.03 & 44.16 \pm 0.03 & 44.16 \pm 0.03 & 44.18 \\ 12189 & 33.85 \pm 0.10 & 44.81 \pm 0.01 & 44.07 \pm 0.03 & 44.16 \pm 1.003 & 44.16 & 44.92 \pm 0.12 & 43.86 \\ 12192 & 33.85 \pm 0.10 & 44.18 \pm 0.01 & 44.07 \pm 0.01 & 44.85 \pm 0.01 & 44.66 & 44.99 \pm 0.12 & 43.86 \\ 12192 & 33.64 \pm 0.06 & 44.01 \pm 0.02 & 44.29 \pm 0.03 & 44.17 \pm 0.03 & 44.77 & 44.88 \pm 0.12 & 43.86 \\ 12192 & 33.64 \pm 0.06 & 44.41 \pm 0.02 & 44.29 \pm 0.03 & 44.17 \pm 0.03 & 44.37 & 45.01 \pm 0.12 & 44.31 \\ 1214 & 40.21 \pm 0.02 & 44.98 \pm 0.01 & 44.85 \pm 0.01 & 44.83 \pm 0.01 & 44.52 & 0.12 & 44.31 \\ 1214 & 40.21 \pm 0.02 & 44.98 \pm 0.01 & 44.85 \pm 0.01 & 44.83 \pm 0.01 & 44.55 \pm 0.12 & 44.34 \\ 12195 & (33.94 \pm 0.07 & 44.46 \pm 0.01 & 44.72 \pm 0.01 & 44.45 \pm 0.01 & 44.51 & 45.10 \pm 0.12 & 44.15 \\ 12198 & (39.56 \pm 0.17 & 44.81 \pm 0.01 & 44.72 \pm 0.01 & 44.65 \pm 0.01 & 45.18 & 45.01 \pm 0.12 & 44.45 \\ 12198 & (39.56 \pm 0.17 & 44.74 \pm 0.01 & 44.75 \pm 0.01 & 44.65 \pm 0.01 & 45.18 & 45.30 \pm 0.12 & 44.45 \\ 12198 & (39.56 \pm 0.17 & 44.76 \pm 0.01 & 45.76 \pm 0.01 & 45.18 & 45.30 \pm 0.12 & 44.45 \\ 12204 & (30.56 \pm 0.17 & 44.76 \pm 0.01 & 45.28 & 0.01 & 45.18 & 45.30 \pm 0.12 & 44.35 \\ 2206 & (30.61 \pm 0.01 & 44.75 \pm 0.01 & 44.65 \pm 0.01 & 45.18 & 45.30 \pm 0.12 & 44.35 \\ 2206 & (30.61 \pm 0.01 & 44.75 \pm 0.01 & 44.65 \pm 0.01 & 45.18 & 45.30 \pm 0.12 & 44.35 \\ 2206 & (30.61 \pm 0.01 & 44.75 \pm 0.01 & 44.65 \pm 0.01 & 45.18 & 45.30 \pm 0.12 & 44.35 \\ 2206 & (30.61 \pm 0.01 & 44.14 \pm 0.02 & 44.38 \pm 0.01 & 44.65 & 45.13 \pm 0.12 & 43.89 \\ 2206 & (30.61 \pm 0.01 & 44.14 \pm 0.02 & 44.34 \pm 0.02 & 44.84 & 45.13 \pm 0.12 & 44.34 \\ 2206 & (30.61 \pm 0.01 & 44.75 \pm 0.01 & 44.65 \pm 0.01 & 44.55 \pm 0.01 & 45.28 & 45.31 \pm 0.12 & 43.89 \\ 2206 & (30.63 \pm 0.017 & 44.46 \pm 0.01 & 44.44 \pm 0.02 & 44.48 \pm 0.02 & 44.84 & 45.1$	2182	$< 39.41 \pm 0.17$	44.41 ± 0.01	44.33 ± 0.02	44.26 ± 0.02	44.44	44.83 ± 0.12	43.14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2184	39.55 ± 0.06	44.28 ± 0.02	44.24 ± 0.02	44.22 ± 0.02	44.20	44.83 ± 0.12	43.82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2185	39.62 ± 0.05	44.11 ± 0.02	44.08 ± 0.02	44.04 ± 0.03	44.96	44.91 ± 0.12	43.26
$ \begin{array}{c} 2187 & < 39.41 \pm 0.17 44.70 \pm 0.01 44.60 \pm 0.02 44.64 \pm 0.01 45.04 45.00 \pm 0.12 44.74 \\ 2189 & 39.38 \pm 0.10 44.81 \pm 0.01 44.61 \pm 0.02 44.16 \pm 0.03 44.18 40.92 \pm 0.12 43.74 \\ 2189 & 39.38 \pm 0.10 44.81 \pm 0.01 44.61 \pm 0.02 44.15 \pm 0.02 44.61 44.92 \pm 0.12 43.87 \\ 2191 & 39.54 \pm 0.06 44.70 \pm 0.01 44.56 \pm 0.01 44.87 \pm 0.01 44.77 44.88 \pm 0.12 43.87 \\ 2192 & 39.62 \pm 0.06 44.70 \pm 0.01 44.56 \pm 0.01 44.84 \pm 0.01 44.77 44.88 \pm 0.01 24.32 \\ 2193 & 39.95 \pm 0.03 44.81 \pm 0.01 44.75 \pm 0.02 44.83 \pm 0.01 44.75 45.01 40.12 43.92 \\ 2193 & 39.95 \pm 0.03 44.81 \pm 0.01 44.75 \pm 0.02 44.83 \pm 0.01 44.75 45.94 \pm 0.12 44.38 \\ 2195 & < 39.54 \pm 0.17 44.48 \pm 0.01 44.75 \pm 0.02 44.83 \pm 0.01 44.52 \pm 50.12 24.38 \\ 2196 & 39.97 \pm 0.03 44.55 \pm 0.01 44.85 \pm 0.01 44.52 \pm 0.10 45.52 \pm 0.12 44.12 \\ 2197 & < 39.55 \pm 0.17 44.60 \pm 0.01 44.77 \pm 0.02 44.41 \pm 0.02 44.41 \pm 0.02 45.18 45.10 \pm 0.12 44.12 \\ 2200 4.06 \pm 0.02 44.71 \pm 0.01 44.67 \pm 0.01 44.75 \pm 0.01 45.18 45.01 \pm 0.12 44.25 \\ 2201 4.392 \pm 0.02 45.73 \pm 0.01 45.59 \pm 0.01 45.26 \pm 0.01 45.18 45.31 \pm 0.12 44.26 \\ 2201 4.39.2 \pm 0.02 45.73 \pm 0.01 45.59 \pm 0.01 45.26 \pm 0.01 46.14 46.64 \pm 0.12 45.28 \\ 2204 < 39.56 \pm 0.17 44.75 \pm 0.01 44.75 \pm 0.01 44.18 \pm 0.02 44.84 45.19 \pm 0.12 44.32 \\ 2205 < 39.61 \pm 0.17 44.75 \pm 0.01 44.16 \pm 0.02 44.48 \pm 0.02 44.84 45.19 \pm 0.12 44.32 \\ 2206 < 30.61 \pm 0.17 44.75 \pm 0.01 44.62 \pm 0.01 44.55 \pm 0.01 45.18 45.39 \pm 0.12 44.32 \\ 2204 < 39.61 \pm 0.17 44.75 \pm 0.01 44.62 \pm 0.01 44.55 \pm 0.01 45.18 45.39 \pm 0.12 44.32 \\ 2206 < 30.61 \pm 0.17 44.75 \pm 0.01 44.62 \pm 0.01 44.75 \pm 0.02 44.84 45.19 \pm 0.12 43.89 \\ 2214 < 30.61 \pm 0.17 44.75 \pm 0.01 44.62 \pm 0.01 44.75 \pm 0.02 44.84 45.19 \pm 0.12 43.89 \\ 2214 < 39.61 \pm 0.17 44.75 \pm 0.01 44.62 \pm 0.01 44.75 \pm 0.02 44.84 45.19 \pm 0.12 43.89 \\ 2214 < 39.61 \pm 0.17 44.14 \pm 0.02 44.44 \pm 0.02 44.$	2186	39.91 ± 0.03	44.55 ± 0.01	44.44 ± 0.01	44.47 ± 0.01	44.78	45.16 ± 0.12	43.87
$ \begin{array}{c} 2188 \\ (2189 \\ (218) \\$	2187	$< 39.41 \pm 0.17$	44.70 ± 0.01	44.60 ± 0.02	44.64 ± 0.01	45.04	45.00 ± 0.12	44.26
$ \begin{array}{c} 1289 \\ 2180 \\ 2190 \\ 2180 \\ 2191 \\ 328, 5\pm 0.10 \\ 4163\pm 0.01 \\ 4163\pm 0.01 \\ 414, 7\pm 0.01 \\ 4143\pm 0.01 \\ 414, 7\pm 0.01 \\ 414, 8\pm 0.01 \\ 417, 7\pm 0.03 \\ 413, 7\pm 0.01 \\ 415, 9\pm 0.12 \\ 413, 9\pm 0.01 \\ 415, 9\pm 0.02 \\ 415, 9\pm 0.01 \\ 415, 9\pm 0.02 \\ 415, 9\pm 0.01 \\ 415, 9\pm 0.01 \\ 415, 9\pm 0.01 \\ 415, 9\pm 0.01 \\$	2188	$< 39.41 \pm 0.17$	44.32 ± 0.02	44.16 ± 0.03	44.16 ± 0.03	44.18	44.92 ± 0.12	43.74
$\begin{array}{c} 1210 \\ 1211 \\ 1212 \\ 1213 \\ 1214 \\ 1215 \\ 1215 \\ 1212 \\ 1213 \\ 1214 \\ 1215 \\ 1215 \\ 1213 \\ 1214 \\ 1215 \\ 12$	2109	39.38 ± 0.10	44.81 ± 0.01 44.63 ± 0.01	44.01 ± 0.02 44.47 ± 0.01	44.31 ± 0.02 44.37 ± 0.01	44.00	44.98 ± 0.12 44.02 ± 0.12	43.80
$\begin{array}{c} 2193 \\ 2193 \\ 2193 \\ 39.95 \pm 0.06 \\ 44.41 \pm 0.02 \\ 44.82 \pm 0.01 \\ 44.72 \pm 0.02 \\ 44.83 \pm 0.01 \\ 44.51 \\$	2190	$< 39.43 \pm 0.17$ 39.54 ± 0.06	44.03 ± 0.01 44.70 ± 0.01	44.47 ± 0.01 44.56 ± 0.01	44.37 ± 0.01 44.48 ± 0.01	44.01 44.77	44.92 ± 0.12 44.88 ± 0.12	43.87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2192	39.62 ± 0.06	44.41 ± 0.02	44.23 ± 0.03	44.17 ± 0.03	44.37	45.01 ± 0.12	43.92
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2193	39.95 ± 0.03	44.81 ± 0.01	44.72 ± 0.02	44.83 ± 0.01	45.01	45.25 ± 0.12	44.31
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2194	40.21 ± 0.02	44.98 ± 0.01	44.85 ± 0.01	44.83 ± 0.01	44.72	45.39 ± 0.12	43.86
$ \begin{array}{c} 2196 & 39.97 \pm 0.03 & 44.55 \pm 0.01 & 44.41 \pm 0.02 & 44.44 \pm 0.01 & 44.50 & 45.10 \pm 0.12 & 44.12 \\ 2198 & (39.56 \pm 0.17 & 44.80 \pm 0.01 & 44.72 \pm 0.01 & 44.75 \pm 0.01 & 45.18 & 45.30 \pm 0.12 & 44.45 \\ 2199 & (39.56 \pm 0.17 & 44.71 \pm 0.01 & 44.57 \pm 0.01 & 44.55 \pm 0.01 & 45.22 & 45.38 \pm 0.12 & 44.25 \\ 2200 & 41.06 \pm 0.02 & 44.71 \pm 0.01 & 44.57 \pm 0.01 & 44.58 \pm 0.01 & 44.92 & 45.19 \pm 0.12 & 44.21 \\ 2201 & 43.92 \pm 0.02 & 45.73 \pm 0.01 & 45.59 \pm 0.01 & 45.62 \pm 0.01 & 46.14 & 46.64 \pm 0.12 & 45.29 \\ 2202 & (39.59 \pm 0.01 & 44.94 \pm 0.01 & 44.88 \pm 0.01 & 44.72 \pm 0.02 & 44.58 & 44.94 \pm 0.12 & 43.88 \\ 2203 & 40.62 \pm 0.01 & 44.94 \pm 0.01 & 44.88 \pm 0.01 & 44.72 \pm 0.02 & 44.58 & 44.94 \pm 0.12 & 43.88 \\ 2204 & (39.61 \pm 0.17 & 44.85 \pm 0.01 & 44.62 \pm 0.01 & 44.55 \pm 0.01 & 44.86 & 45.13 \pm 0.12 & 43.87 \\ 2206 & (39.61 \pm 0.17 & 44.75 \pm 0.01 & 44.41 \pm 0.02 & 44.33 \pm 0.02 & 44.86 & 45.13 \pm 0.12 & 43.86 \\ 2207 & (39.63 \pm 0.17 & 44.46 \pm 0.02 & 44.33 \pm 0.02 & 44.33 \pm 0.02 & 44.86 & 45.13 \pm 0.12 & 43.86 \\ 2208 & (39.64 \pm 0.17 & 44.47 \pm 0.02 & 44.34 \pm 0.02 & 44.27 \pm 0.02 & 44.63 & 45.03 \pm 0.12 & 43.80 \\ 2209 & (39.65 \pm 0.17 & 44.65 \pm 0.02 & 44.26 \pm 0.03 & 44.25 \pm 0.02 & 44.86 & 45.13 \pm 0.12 & 43.87 \\ 2210 & (39.65 \pm 0.17 & 44.75 \pm 0.01 & 44.25 \pm 0.03 & 44.25 \pm 0.02 & 44.81 & 45.12 \pm 0.12 & 43.87 \\ 2211 & (39.67 \pm 0.17 & 44.37 \pm 0.02 & 44.25 \pm 0.02 & 44.47 & 54.57 \pm 0.12 & 44.07 \\ 2212 & (39.67 \pm 0.17 & 44.37 \pm 0.01 & 45.52 \pm 0.01 & 44.97 \pm 0.01 & 45.52 & 55.66 \pm 0.12 & 44.04 \\ 2212 & (39.67 \pm 0.17 & 44.37 \pm 0.01 & 44.59 \pm 0.02 & 44.48 \pm 0.02 & 44.88 & 45.11 \pm 0.12 & 43.81 \\ 2214 & (39.67 \pm 0.17 & 44.47 \pm 0.01 & 44.59 \pm 0.02 & 44.48 \pm 0.02 & 44.88 & 45.11 \pm 0.12 & 43.84 \\ 2214 & (39.66 \pm 0.17 & 44.47 \pm 0.01 & 44.59 \pm 0.02 & 44.48 \pm 0.02 & 44.88 & 45.11 \pm 0.12 & 43.84 \\ 2214 & (39.66 \pm 0.17 & 44.67 \pm 0.01 & 44.75 \pm 0.01 & 45.57 & 45.24 \pm 0.12 & 43.59 \\ 2216 & (39.68 \pm 0.17 & 44.75 \pm 0.01 & 44.75 \pm 0.01 & 44.75 \pm 0.01 & 45.26 & 51.14 \pm 0.12 & 43.84 \\ 2218 & (39.75 \pm 0.17 & 44.85 \pm 0.01 & 44.45 \pm 0.02 & 44.48 \pm 0.02 & 44.88 & 50.11 & 44.48 \\ $	2195	$< 39.54 \pm 0.17$	44.44 ± 0.01	44.29 ± 0.02	44.29 ± 0.02	45.10	45.25 ± 0.12	43.97
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2196	39.97 ± 0.03	44.55 ± 0.01	44.41 ± 0.02	44.41 ± 0.01	44.50	45.10 ± 0.12	44.12
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2197	$< 39.55 \pm 0.17$	44.60 ± 0.01	44.47 ± 0.02	44.44 ± 0.02	45.51	45.10 ± 0.12	44.15
$ \begin{array}{c} 1390 \\ 2200 \\ 2200 \\ 41.06 \pm 0.02 \\ 44.71 \pm 0.01 \\ 44.57 \pm 0.01 \\ 44.58 \pm 0.01 \\ 44.92 \\ 45.19 \pm 0.12 \\ 45.19 \pm 0.12 \\ 44.21 \\ 2201 \\ 43.92 \pm 0.02 \\ 45.73 \pm 0.01 \\ 44.59 \pm 0.01 \\ 44.59 \pm 0.01 \\ 44.58 \\ 44.01 \\ 44.92 \\ 45.19 \pm 0.12 \\ 44.21 \\ 44.21 \\ 2202 \\ 43.92 \pm 0.02 \\ 45.73 \pm 0.01 \\ 44.92 \\ 44.91 \\ 44.58 \\ 44.01 \\ 44.58 \\ 44.002 \\ 44.38 \\ 44.49 \\ 44.01 \\ 44.92 \\ 44.38 \\ 44.94 \\ 44.01 \\ 44.92 \\ 44.38 \\ 44.94 \\ 44.91 \\ 44.92 \\ 44.38 \\ 44.94 \\ 44.91 \\ 44.92 \\ 44.38 \\ 44.94 \\ 44.92 \\ 44.91 \\ 44.92 \\ 44.91 \\ 44.92 \\ 45.19 \pm 0.12 \\ 44.38 \\ 45.18 \\ 44.91 \\ 44.24 \\ 42205 \\ 43.96 \pm 0.17 \\ 44.48 \\ 40.01 \\ 44.49 \\ 44.02 \\ 44.02 \\ 44.64 \\ 45.03 \\ 44.01 \\ 44.64 \\ 45.03 \\ 44.12 \\ 44.86 \\ 45.03 \\ 44.12 \\ 44.86 \\ 45.03 \\ 44.12 \\ 44.86 \\ 45.03 \\ 44.12 \\ 44.39 \\ 40.2 \\ 44.86 \\ 45.03 \\ 44.12 \\ 44.01 \\ 44.91 \\ 44$	2198	$< 39.50 \pm 0.17$ $< 20.56 \pm 0.17$	44.81 ± 0.01 44.74 ± 0.01	44.72 ± 0.01 44.61 ± 0.01	44.75 ± 0.01 44.65 ± 0.01	45.18	45.30 ± 0.12 45.28 ± 0.12	44.46
$ \begin{array}{c} 2201 \\ 2202 \\ < 39,59 \pm 0.035 \\ 41,52 \pm 0.01 \\ 45,79 \pm 0.01 \\ 45,59 \pm 0.01 \\ 44,82 \pm 0.01 \\ 44,81 \pm 0.03 \\ 44,24 \pm 0.02 \\ 44,58 \\ 44,94 \pm 0.12 \\ 44,58 \\ 40,61 \pm 0.12 \\ 44,58 \\ 41,94 \\ 41,94 \\ 41,91 \\ 41,$	2199	$< 39.30 \pm 0.17$ 41.06 ± 0.02	44.74 ± 0.01 44.71 ± 0.01	44.01 ± 0.01 44.57 ± 0.01	44.05 ± 0.01 44.58 ± 0.01	45.22	45.38 ± 0.12 45.19 ± 0.12	44.25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2200	41.00 ± 0.02 43.92 ± 0.02	45.73 ± 0.01	45.59 ± 0.01	45.62 ± 0.01	46.14	46.64 ± 0.12	45.29
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2202	$< 39.59 \pm 0.17$	44.29 ± 0.01	44.18 ± 0.03	44.24 ± 0.02	44.58	44.94 ± 0.12	43.83
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2203	40.62 ± 0.01	44.94 ± 0.01	44.80 ± 0.01	44.72 ± 0.02	44.93	45.31 ± 0.12	43.89
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2204	$< 39.61 \pm 0.17$	44.88 ± 0.01	44.68 ± 0.01	44.59 ± 0.01	45.18	45.39 ± 0.12	44.24
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2205	$< 39.61 \pm 0.17$	44.75 ± 0.01	44.62 ± 0.01	44.55 ± 0.01	44.92	45.19 ± 0.12	44.32
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2206	$< 39.61 \pm 0.17$	44.57 ± 0.01	44.41 ± 0.02	44.40 ± 0.02	45.40	45.08 ± 0.12	43.65
$ \begin{array}{c} 2209 &< 39.65 \pm 0.17 & 44.06 \pm 0.02 & 44.34 \pm 0.02 & 44.11 \pm 0.02 & 44.63 & 45.03 \pm 0.12 & 43.52 \\ 2210 & 39.65 \pm 0.17 & 44.06 \pm 0.02 & 44.00 \pm 0.04 & 41.11 \pm 0.03 & 44.64 & 45.03 \pm 0.12 & 43.52 \\ 2211 &< 39.67 \pm 0.17 & 44.40 \pm 0.02 & 44.25 \pm 0.02 & 44.29 \pm 0.02 & 44.75 & 45.13 \pm 0.12 & 44.04 \\ 2212 &< 39.67 \pm 0.17 & 44.57 \pm 0.02 & 44.41 \pm 0.02 & 44.25 \pm 0.02 & 44.75 & 45.13 \pm 0.12 & 44.04 \\ 2214 &< 39.67 \pm 0.17 & 44.57 \pm 0.02 & 44.41 \pm 0.02 & 44.45 \pm 0.02 & 45.57 & 45.57 \pm 0.12 & 44.07 \\ 2213 & 40.06 \pm 0.04 & 45.19 \pm 0.01 & 45.02 \pm 0.01 & 44.97 \pm 0.01 & 44.55 \pm 0.02 & 44.87 & 45.10 \pm 0.12 & 44.45 \\ 2214 &< 39.67 \pm 0.17 & 44.47 \pm 0.01 & 44.55 \pm 0.02 & 44.48 \pm 0.02 & 44.92 & 45.03 \pm 0.12 & 44.25 \\ 2216 &< 39.69 \pm 0.17 & 44.74 \pm 0.01 & 44.55 \pm 0.02 & 44.48 \pm 0.02 & 44.92 & 45.03 \pm 0.12 & 44.25 \\ 2216 &< 39.69 \pm 0.17 & 44.61 \pm 0.02 & 44.46 \pm 0.01 & 44.76 \pm 0.01 & 45.24 & 45.21 \pm 0.12 & 43.59 \\ 2218 &< 39.71 \pm 0.17 & 44.61 \pm 0.02 & 44.36 \pm 0.01 & 44.77 \pm 0.01 & 45.24 & 45.21 \pm 0.12 & 43.72 \\ 2219 &< 39.73 \pm 0.17 & 44.51 \pm 0.02 & 44.35 \pm 0.03 & 44.39 \pm 0.02 & 44.86 & 45.22 \pm 0.12 & 43.72 \\ 2222 &< 39.80 \pm 0.17 & 44.51 \pm 0.02 & 44.35 \pm 0.03 & 44.39 \pm 0.02 & 44.86 & 45.22 \pm 0.12 & 43.73 \\ 2222 &< 39.80 \pm 0.17 & 44.51 \pm 0.02 & 44.31 \pm 0.03 & 44.39 \pm 0.02 & 44.86 & 45.27 \pm 0.12 & 43.73 \\ 2222 &< 39.80 \pm 0.17 & 44.51 \pm 0.02 & 44.31 \pm 0.03 & 44.39 \pm 0.02 & 44.86 & 45.27 \pm 0.12 & 43.73 \\ 2224 & 42.12 \pm 0.02 & 44.76 \pm 0.01 & 44.67 \pm 0.01 & 44.67 \pm 0.01 & 45.64 & 54.57 \pm 0.12 & 43.73 \\ 2224 &< 39.80 \pm 0.17 & 44.51 \pm 0.01 & 44.67 \pm 0.01 & 44.67 \pm 0.01 & 45.64 & 54.57 \pm 0.12 & 44.26 \\ 2224 &< 40.08 \pm 0.04 & 45.04 \pm 0.01 & 44.67 \pm 0.01 & 44.67 \pm 0.01 & 45.67 & 45.24 \pm 0.12 & 44.14 \\ 2228 &< 39.88 \pm 0.17 & 44.58 \pm 0.01 & 44.67 \pm 0.01 & 44.67 \pm 0.01 & 45.67 & 50.12 & 43.96 \\ 2227 &< 39.88 \pm 0.17 & 44.58 \pm 0.01 & 44.67 \pm 0.01 & 44.67 \pm 0.01 & 45.67 & 50.12 & 44.26 \\ 2224 &< 42.12 \pm 0.02 & 44.76 \pm 0.02 & 44.67 \pm 0.02 & 44.62 \pm 0.02 & 45.37 & 45.54 \pm 0.12 & 44.48 \\ 2224 &< 39.88 \pm 0.17 & 44.58 \pm 0.01 & 44.75 \pm 0.01 & 44.67$	2207	$< 39.63 \pm 0.17$ $< 20.64 \pm 0.17$	44.46 ± 0.02 44.47 ± 0.02	44.33 ± 0.02 44.24 ± 0.02	44.33 ± 0.02 44.27 ± 0.02	44.80	45.13 ± 0.12 45.02 ± 0.12	43.97
$ \begin{array}{c} 2210 & 39.68 \pm 0.07 & 44.41 \pm 0.02 & 44.26 \pm 0.03 & 44.25 \pm 0.02 & 44.81 & 45.12 \pm 0.12 & 43.79 \\ 2211 & <39.67 \pm 0.17 & 44.57 \pm 0.02 & 44.26 \pm 0.02 & 44.25 \pm 0.02 & 44.81 & 45.12 \pm 0.12 & 43.79 \\ 2213 & 40.06 \pm 0.04 & 45.19 \pm 0.01 & 45.02 \pm 0.01 & 44.55 \pm 0.02 & 44.87 & 45.13 \pm 0.12 & 44.04 \\ 2214 & <39.67 \pm 0.17 & 44.67 \pm 0.01 & 44.39 \pm 0.02 & 44.43 \pm 0.02 & 44.87 & 45.10 \pm 0.12 & 44.41 \\ 2216 & <39.68 \pm 0.17 & 44.60 \pm 0.01 & 44.55 \pm 0.02 & 44.48 \pm 0.02 & 44.88 & 45.11 \pm 0.12 & 43.84 \\ 2217 & 40.98 \pm 0.01 & 44.77 \pm 0.01 & 44.65 \pm 0.02 & 44.48 \pm 0.02 & 44.88 & 45.11 \pm 0.12 & 43.84 \\ 2218 & <39.69 \pm 0.17 & 44.60 \pm 0.01 & 44.49 \pm 0.02 & 44.48 \pm 0.02 & 44.88 & 45.11 \pm 0.12 & 43.84 \\ 2219 & <39.69 \pm 0.17 & 44.60 \pm 0.01 & 44.67 \pm 0.01 & 44.76 \pm 0.01 & 45.24 & 45.21 \pm 0.12 & 43.59 \\ 2218 & <39.71 \pm 0.17 & 44.61 \pm 0.02 & 44.46 \pm 0.03 & 44.47 \pm 0.03 & 45.10 & 45.25 \pm 0.12 & 43.72 \\ 2219 & <39.75 \pm 0.17 & 44.95 \pm 0.01 & 44.79 \pm 0.01 & 44.72 \pm 0.01 & 45.37 & 45.28 \pm 0.12 & 43.83 \\ 2220 & <39.75 \pm 0.17 & 44.95 \pm 0.01 & 44.67 \pm 0.02 & 44.35 \pm 0.00 & 45.26 & 45.14 \pm 0.12 & 43.73 \\ 2222 & <39.80 \pm 0.17 & 44.51 \pm 0.02 & 44.35 \pm 0.03 & 44.39 \pm 0.02 & 44.86 & 45.22 \pm 0.12 & 43.90 \\ 2221 & 40.04 \pm 0.05 & 44.78 \pm 0.01 & 44.67 \pm 0.01 & 44.67 \pm 0.01 & 45.56 & 45.14 \pm 0.12 & 43.73 \\ 2222 & <39.80 \pm 0.17 & 44.81 \pm 0.01 & 44.63 \pm 0.01 & 44.67 \pm 0.01 & 45.74 & 45.27 \pm 0.12 & 44.23 \\ 2224 & 42.12 \pm 0.02 & 44.76 \pm 0.01 & 44.67 \pm 0.01 & 44.75 \pm 0.01 & 45.27 & 45.20 \pm 0.12 & 43.94 \\ 2225 & 40.08 \pm 0.04 & 45.04 \pm 0.01 & 44.85 \pm 0.01 & 44.75 \pm 0.01 & 45.77 & 45.24 \pm 0.12 & 44.41 \\ 2229 & <39.82 \pm 0.17 & 44.86 \pm 0.01 & 44.76 \pm 0.02 & 44.62 \pm 0.02 & 45.21 & 45.32 \pm 0.12 & 43.96 \\ 2227 & <39.82 \pm 0.17 & 44.86 \pm 0.01 & 44.76 \pm 0.02 & 44.62 \pm 0.02 & 45.21 & 45.24 \pm 0.12 & 44.41 \\ 2228 & <39.82 \pm 0.17 & 44.84 \pm 0.01 & 44.67 \pm 0.01 & 44.75 \pm 0.01 & 44.75 & 52.0 & 45.31 \pm 0.13 & 44.66 \\ 2244 & <2.24 \pm 0.12 \pm 0.17 & 44.84 \pm 0.02 & 44.64 \pm 0.02 & 44.64 \pm 0.02 & 45.51 & 45.37 \pm 0.12 & 44.21 \\ 2233 & <39.99 \pm 0.17 & 44.84 \pm 0.01 & 44.67 \pm 0.01 $	2208	$< 39.04 \pm 0.17$ $< 39.65 \pm 0.17$	44.47 ± 0.02 44.06 ± 0.02	44.34 ± 0.02 44.00 ± 0.04	44.27 ± 0.02 44.11 ± 0.03	44.03 44.64	45.03 ± 0.12 45.03 ± 0.12	43.80 43.52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2210	39.68 ± 0.07	44.41 ± 0.02	44.26 ± 0.03	44.25 ± 0.02	44.81	45.12 ± 0.12	43.79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2211	$< 39.67 \pm 0.17$	44.40 ± 0.02	44.25 ± 0.02	44.29 ± 0.02	44.75	45.13 ± 0.12	44.04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2212	$< 39.67 \pm 0.17$	44.57 ± 0.02	44.41 ± 0.02	44.45 ± 0.02	45.07	45.57 ± 0.12	44.07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2213	40.06 ± 0.04	45.19 ± 0.01	45.02 ± 0.01	44.97 ± 0.01	45.52	45.66 ± 0.12	44.46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2214	$< 39.67 \pm 0.17$	44.47 ± 0.01	44.39 ± 0.02	44.43 ± 0.02	44.87	45.10 ± 0.12	44.11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2215	$< 39.68 \pm 0.17$	44.74 ± 0.01	44.55 ± 0.02	44.48 ± 0.02	44.92	45.03 ± 0.12	44.25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2210 2217	$< 39.69 \pm 0.17$ 40.08 ± 0.01	44.00 ± 0.01 44.77 ± 0.01	44.49 ± 0.02 44.67 ± 0.01	44.48 ± 0.02 44.76 ± 0.01	44.88 45.24	45.11 ± 0.12 45.21 ± 0.12	43.84
$\begin{array}{c} 2219 &< 39.73 \pm 0.17 & 44.98 \pm 0.01 & 44.79 \pm 0.01 & 44.72 \pm 0.01 & 45.37 & 45.28 \pm 0.12 & 43.83 \\ 2220 &< 39.75 \pm 0.17 & 44.51 \pm 0.02 & 44.35 \pm 0.03 & 44.39 \pm 0.02 & 44.86 & 45.22 \pm 0.12 & 43.83 \\ 2221 & 40.04 \pm 0.05 & 44.78 \pm 0.01 & 44.67 \pm 0.02 & 44.35 \pm 0.01 & 45.26 & 45.14 \pm 0.12 & 43.73 \\ 2222 &< 39.80 \pm 0.17 & 44.51 \pm 0.02 & 44.31 \pm 0.03 & 44.30 \pm 0.03 & 45.14 & 45.27 \pm 0.12 & 44.23 \\ 2223 &< 39.80 \pm 0.17 & 44.81 \pm 0.01 & 44.63 \pm 0.01 & 44.61 \pm 0.01 & 45.04 & 45.27 \pm 0.12 & 44.23 \\ 2224 & 42.12 \pm 0.02 & 44.76 \pm 0.01 & 44.67 \pm 0.01 & 44.75 \pm 0.01 & 45.36 & 45.59 \pm 0.12 & 44.86 \\ 2225 & 40.08 \pm 0.04 & 45.04 \pm 0.01 & 44.67 \pm 0.01 & 44.75 \pm 0.01 & 45.27 & 45.20 \pm 0.12 & 43.94 \\ 2226 &< 39.82 \pm 0.17 & 44.86 \pm 0.01 & 44.71 \pm 0.02 & 44.62 \pm 0.02 & 45.21 & 45.32 \pm 0.12 & 43.96 \\ 2227 &< 39.82 \pm 0.17 & 44.86 \pm 0.01 & 44.46 \pm 0.02 & 44.77 & 45.24 \pm 0.12 & 44.11 \\ 2228 &< 39.85 \pm 0.17 & 44.88 \pm 0.01 & 44.86 \pm 0.01 & 44.75 \pm 0.01 & 44.95 & 45.23 \pm 0.12 & 44.44 \\ 2229 &< 39.89 \pm 0.17 & 44.38 \pm 0.03 & 44.28 \pm 0.03 & 44.31 \pm 0.03 & 44.76 & 45.27 \pm 0.12 & 44.21 \\ 2330 &< 39.90 \pm 0.17 & 44.32 \pm 0.03 & 44.07 \pm 0.04 & 44.19 \pm 0.03 & 44.76 & 45.27 \pm 0.12 & 44.21 \\ 2231 &< 39.93 \pm 0.17 & 44.71 \pm 0.01 & 44.55 \pm 0.02 & 44.56 \pm 0.02 & 45.37 & 45.54 \pm 0.13 & 43.79 \\ 2233 &< 39.93 \pm 0.17 & 44.71 \pm 0.01 & 44.92 \pm 0.01 & 44.95 \pm 0.01 & 45.60 & 45.71 \pm 0.13 & 43.66 \\ 2233 &< 39.97 \pm 0.17 & 44.72 \pm 0.02 & 44.45 \pm 0.02 & 44.48 \pm 0.02 & 45.20 & 45.31 \pm 0.13 & 43.66 \\ 2234 & 40.39 \pm 0.03 & 44.75 \pm 0.02 & 44.45 \pm 0.02 & 44.77 \pm 0.01 & 45.65 \pm 5.01 & 44.42 \\ 2238 &< 40.01 \pm 0.17 & 44.82 \pm 0.01 & 44.72 \pm 0.01 & 44.75 \pm 0.02 & 45.20 & 45.31 \pm 0.13 & 43.66 \\ 2234 & 40.03 \pm 0.17 & 44.62 \pm 0.02 & 44.65 \pm 0.02 & 44.65 \pm 0.02 & 45.20 & 45.31 \pm 0.13 & 43.66 \\ 2234 & 40.03 \pm 0.17 & 44.94 \pm 0.01 & 44.78 \pm 0.02 & 44.65 \pm 0.02 & 45.52 & 45.38 \pm 0.13 & 44.42 \\ 2238 &< 40.01 \pm 0.17 & 44.82 \pm 0.01 & 44.77 \pm 0.01 & 44.77 \pm 0.02 & 45.68 & 45.77 \pm 0.13 & 44.69 \\ 2244 & 45.25 \pm 0.01 & 44.77 \pm 0.01 & 44.77 \pm 0.02 & 45.55 & 45.55 \pm 0.13 & 44.66 \\ 2244 $	2217	$< 39.71 \pm 0.01$	44.77 ± 0.01 44.61 ± 0.02	44.07 ± 0.01 44.46 ± 0.03	44.70 ± 0.01 44.47 ± 0.03	45.24 45.10	45.21 ± 0.12 45.25 ± 0.12	43.39 43.72
$\begin{array}{c} 2220 &< 39.75 \pm 0.17 & 44.51 \pm 0.02 & 44.35 \pm 0.03 & 44.39 \pm 0.02 & 44.86 & 45.22 \pm 0.12 & 43.90 \\ 2221 & 40.04 \pm 0.05 & 44.78 \pm 0.01 & 44.67 \pm 0.02 & 44.55 \pm 0.01 & 45.26 & 45.14 \pm 0.12 & 43.73 \\ 2222 &< 39.80 \pm 0.17 & 44.51 \pm 0.02 & 44.31 \pm 0.03 & 44.30 \pm 0.03 & 45.14 & 45.27 \pm 0.12 & 44.23 \\ 2223 &< 39.80 \pm 0.17 & 44.81 \pm 0.01 & 44.63 \pm 0.01 & 44.61 \pm 0.01 & 45.04 & 45.27 \pm 0.12 & 44.22 \\ 2224 & 42.12 \pm 0.02 & 44.76 \pm 0.01 & 44.67 \pm 0.01 & 44.75 \pm 0.01 & 45.36 & 45.59 \pm 0.12 & 44.86 \\ 2225 & 40.08 \pm 0.04 & 45.04 \pm 0.01 & 44.67 \pm 0.01 & 44.75 \pm 0.01 & 45.27 & 45.20 \pm 0.12 & 43.94 \\ 2226 &< 39.82 \pm 0.17 & 44.86 \pm 0.01 & 44.71 \pm 0.02 & 44.62 \pm 0.02 & 45.21 & 45.32 \pm 0.12 & 43.96 \\ 2227 &< 39.82 \pm 0.17 & 44.86 \pm 0.01 & 44.71 \pm 0.02 & 44.62 \pm 0.02 & 44.77 & 45.24 \pm 0.12 & 44.11 \\ 2228 &< 39.82 \pm 0.17 & 44.89 \pm 0.01 & 44.80 \pm 0.01 & 44.75 \pm 0.01 & 44.95 & 45.23 \pm 0.12 & 44.41 \\ 2230 &< 39.90 \pm 0.17 & 44.20 \pm 0.03 & 44.07 \pm 0.04 & 44.19 \pm 0.03 & 44.76 & 45.27 \pm 0.12 & 44.21 \\ 2230 &< 39.90 \pm 0.17 & 44.20 \pm 0.03 & 44.07 \pm 0.04 & 44.19 \pm 0.03 & 44.75 & 45.24 \pm 0.12 & 44.21 \\ 2231 &< 39.92 \pm 0.17 & 44.71 \pm 0.01 & 44.55 \pm 0.02 & 44.56 \pm 0.02 & 45.37 & 45.54 \pm 0.13 & 43.79 \\ 2232 &< 39.93 \pm 0.17 & 44.50 \pm 0.02 & 44.45 \pm 0.02 & 44.48 \pm 0.02 & 45.20 & 45.31 \pm 0.13 & 43.66 \\ 2234 & 40.39 \pm 0.03 & 44.75 \pm 0.01 & 44.72 \pm 0.01 & 44.95 \pm 0.01 & 45.60 & 45.71 \pm 0.13 & 44.69 \\ 2233 &< 39.97 \pm 0.17 & 44.50 \pm 0.02 & 44.55 \pm 0.02 & 44.55 \pm 0.02 & 45.37 & 45.54 \pm 0.13 & 43.66 \\ 2235 &< 39.97 \pm 0.17 & 44.50 \pm 0.02 & 44.65 \pm 0.02 & 45.20 & 45.31 \pm 0.13 & 43.66 \\ 2234 & 40.39 \pm 0.03 & 44.75 \pm 0.01 & 44.72 \pm 0.01 & 44.76 \pm 0.01 & 45.65 \pm 0.13 & 44.13 \\ 2236 &< 39.99 \pm 0.17 & 44.54 \pm 0.02 & 44.65 \pm 0.02 & 44.55 \pm 0.02 & 45.35 \pm 0.13 & 44.92 \\ 2246 &< 40.03 \pm 0.17 & 44.81 \pm 0.02 & 44.65 \pm 0.02 & 44.55 \pm 0.02 & 45.35 \pm 0.13 & 44.42 \\ 2238 &< 40.01 \pm 0.17 & 44.81 \pm 0.02 & 44.65 \pm 0.02 & 45.75 \pm 0.13 & 44.42 \\ 2244 & 42.52 \pm 0.01 & 44.75 \pm 0.01 & 44.77 \pm 0.02 & 45.68 & 45.77 \pm 0.13 & 44.66 \\ 2240 &< 40.03 \pm 0.17 & 44.86 \pm 0.01 & 44.75$	2219	$< 39.73 \pm 0.17$	44.98 ± 0.01	44.79 ± 0.01	44.72 ± 0.01	45.37	45.28 ± 0.12	43.83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2220	$< 39.75 \pm 0.17$	44.51 ± 0.02	44.35 ± 0.03	44.39 ± 0.02	44.86	45.22 ± 0.12	43.90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2221	40.04 ± 0.05	44.78 ± 0.01	44.67 ± 0.02	44.55 ± 0.01	45.26	45.14 ± 0.12	43.73
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2222	$< 39.80 \pm 0.17$	44.51 ± 0.02	44.31 ± 0.03	44.30 ± 0.03	45.14	45.27 ± 0.12	44.23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2223	$< 39.80 \pm 0.17$	44.81 ± 0.01	44.63 ± 0.01	44.61 ± 0.01	45.04	45.27 ± 0.12	44.22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2224	42.12 ± 0.02	44.76 ± 0.01	44.67 ± 0.01	44.75 ± 0.01	45.36	45.59 ± 0.12	44.86
$\begin{array}{c} 2227 &< 39.82 \pm 0.17 & 44.85 \pm 0.01 & 44.46 \pm 0.02 & 44.02 \pm 0.02 & 45.21 & 45.52 \pm 0.12 & 44.11 \\ 2228 &< 39.85 \pm 0.17 & 44.89 \pm 0.01 & 44.46 \pm 0.02 & 44.40 \pm 0.02 & 44.77 & 45.24 \pm 0.12 & 44.11 \\ 2229 &< 39.89 \pm 0.17 & 44.43 \pm 0.03 & 44.28 \pm 0.03 & 44.31 \pm 0.03 & 44.76 & 45.27 \pm 0.12 & 44.21 \\ 2230 &< 39.90 \pm 0.17 & 44.43 \pm 0.03 & 44.28 \pm 0.04 & 44.19 \pm 0.03 & 44.75 & 45.24 \pm 0.12 & 44.21 \\ 2230 &< 39.90 \pm 0.17 & 44.20 \pm 0.03 & 44.07 \pm 0.04 & 44.19 \pm 0.03 & 44.75 & 45.24 \pm 0.12 & 44.05 \\ 2231 &< 39.92 \pm 0.17 & 44.71 \pm 0.01 & 44.55 \pm 0.02 & 44.56 \pm 0.02 & 45.37 & 45.54 \pm 0.13 & 43.79 \\ 2232 &< 39.93 \pm 0.17 & 45.01 \pm 0.01 & 44.92 \pm 0.01 & 44.95 \pm 0.01 & 45.60 & 45.71 \pm 0.13 & 44.69 \\ 2233 &< 39.97 \pm 0.17 & 44.50 \pm 0.02 & 44.45 \pm 0.02 & 44.48 \pm 0.02 & 45.20 & 45.31 \pm 0.13 & 43.66 \\ 2234 & 40.39 \pm 0.03 & 44.75 \pm 0.01 & 44.72 \pm 0.01 & 44.76 \pm 0.01 & 45.72 & 45.75 \pm 0.13 & 44.66 \\ 2235 &< 39.97 \pm 0.17 & 44.52 \pm 0.02 & 44.57 \pm 0.03 & 44.50 \pm 0.03 & 45.28 & 45.35 \pm 0.13 & 43.93 \\ 2236 &< 39.99 \pm 0.17 & 44.54 \pm 0.02 & 44.66 \pm 0.02 & 44.47 \pm 0.02 & 45.10 & 45.65 \pm 0.13 & 44.13 \\ 2238 &< 40.01 \pm 0.17 & 44.62 \pm 0.02 & 44.66 \pm 0.02 & 44.65 \pm 0.02 & 45.22 & 45.38 \pm 0.13 & 44.42 \\ 2238 &< 40.01 \pm 0.17 & 44.81 \pm 0.02 & 44.68 \pm 0.02 & 44.65 \pm 0.02 & 45.52 & 45.55 \pm 0.13 & 44.99 \\ 2239 & 43.01 \pm 0.01 & 44.82 \pm 0.01 & 44.71 \pm 0.02 & 44.76 \pm 0.02 & 45.01 & 45.65 \pm 0.13 & 44.99 \\ 2240 &< 40.03 \pm 0.17 & 44.94 \pm 0.01 & 44.78 \pm 0.02 & 44.77 \pm 0.02 & 45.68 & 45.77 \pm 0.13 & 44.39 \\ 2241 & 40.19 \pm 0.06 & 44.53 \pm 0.02 & 44.42 \pm 0.03 & 44.34 \pm 0.03 & 45.01 & 45.44 \pm 0.13 & 44.22 \\ 2425 \pm 0.01 & 44.99 \pm 0.01 & 44.77 \pm 0.02 & 44.65 \pm 0.02 & 45.55 & 45.50 \pm 0.13 & 44.39 \\ 2244 & 42.52 \pm 0.01 & 44.99 \pm 0.01 & 44.77 \pm 0.02 & 44.88 \pm 0.01 & 45.54 \pm 0.13 & 44.22 \\ 42.52 \pm 0.01 & 44.99 \pm 0.01 & 44.77 \pm 0.02 & 45.55 & 45.50 \pm 0.13 & 44.42 \\ 244 & 42.27 \pm 0.02 & 44.77 \pm 0.02 & 44.88 \pm 0.01 & 45.54 \pm 0.13 & 44.24 \\ 42.44 & 42.27 \pm 0.02 & 44.77 \pm 0.02 & 44.88 \pm 0.01 & 45.54 \pm 0.13 & 44.24 \\ 42.44 & 42.27 \pm 0.02 & 44.79 \pm 0.01 & 44.77 \pm 0.02 &$	2220	40.08 ± 0.04	45.04 ± 0.01 44.86 ± 0.01	44.85 ± 0.01 44.71 ± 0.02	44.75 ± 0.01 44.62 ± 0.02	45.27	45.20 ± 0.12 45.32 ± 0.12	43.94
$\begin{array}{c} 2228 < 39.85 \pm 0.17 & 44.89 \pm 0.01 & 44.80 \pm 0.01 & 44.75 \pm 0.01 & 44.95 & 45.23 \pm 0.12 & 44.44 \\ 2229 < 39.89 \pm 0.17 & 44.43 \pm 0.03 & 44.28 \pm 0.03 & 44.31 \pm 0.03 & 44.76 & 45.27 \pm 0.12 & 44.21 \\ 2230 < 39.90 \pm 0.17 & 44.20 \pm 0.03 & 44.07 \pm 0.04 & 44.19 \pm 0.03 & 44.75 & 45.24 \pm 0.12 & 44.21 \\ 2231 < 39.92 \pm 0.17 & 44.71 \pm 0.01 & 44.55 \pm 0.02 & 44.56 \pm 0.02 & 45.37 & 45.54 \pm 0.13 & 43.79 \\ 2232 < 39.93 \pm 0.17 & 45.01 \pm 0.01 & 44.92 \pm 0.01 & 44.95 \pm 0.01 & 45.60 & 45.71 \pm 0.13 & 44.69 \\ 2233 < 39.97 \pm 0.17 & 44.50 \pm 0.02 & 44.45 \pm 0.02 & 44.48 \pm 0.02 & 45.20 & 45.31 \pm 0.13 & 43.66 \\ 2234 & 40.39 \pm 0.03 & 44.75 \pm 0.01 & 44.72 \pm 0.01 & 44.76 \pm 0.01 & 45.72 & 45.75 \pm 0.13 & 44.66 \\ 2235 < 39.97 \pm 0.17 & 44.52 \pm 0.02 & 44.57 \pm 0.03 & 44.50 \pm 0.03 & 45.28 & 45.35 \pm 0.13 & 43.93 \\ 2236 < 39.99 \pm 0.17 & 44.54 \pm 0.02 & 44.66 \pm 0.02 & 44.47 \pm 0.02 & 45.10 & 45.65 \pm 0.13 & 44.13 \\ 2237 < 40.00 \pm 0.17 & 44.62 \pm 0.02 & 44.66 \pm 0.02 & 44.65 \pm 0.02 & 45.32 & 45.55 \pm 0.13 & 44.42 \\ 2238 < 40.01 \pm 0.17 & 44.81 \pm 0.02 & 44.68 \pm 0.02 & 44.65 \pm 0.02 & 45.32 & 45.55 \pm 0.13 & 44.66 \\ 2240 < 40.03 \pm 0.17 & 44.94 \pm 0.01 & 44.78 \pm 0.02 & 44.77 \pm 0.02 & 45.68 & 45.77 \pm 0.13 & 44.39 \\ 2241 & 40.19 \pm 0.06 & 44.53 \pm 0.02 & 44.27 \pm 0.01 & 44.77 \pm 0.02 & 45.68 & 45.77 \pm 0.13 & 44.39 \\ 2242 & 42.52 \pm 0.01 & 44.90 \pm 0.01 & 44.77 \pm 0.02 & 44.58 \pm 0.01 & 45.64 \pm 0.13 & 44.22 \\ 2424 & 42.52 \pm 0.01 & 44.90 \pm 0.01 & 44.77 \pm 0.02 & 44.58 \pm 0.01 & 45.54 \pm 0.13 & 44.22 \\ 244 & 42.52 \pm 0.01 & 44.90 \pm 0.01 & 44.77 \pm 0.02 & 45.55 & 45.50 \pm 0.13 & 44.39 \\ 244 & 40.09 \pm 0.17 & 44.86 \pm 0.01 & 44.77 \pm 0.02 & 45.55 & 45.55 \pm 0.13 & 44.24 \\ 244 & 42.52 \pm 0.01 & 44.77 \pm 0.02 & 44.88 \pm 0.01 & 45.54 \pm 0.13 & 44.22 \\ 44.54 \pm 0.01 & 44.77 \pm 0.02 & 44.88 \pm 0.01 & 45.54 \pm 0.13 & 44.22 \\ 44.54 \pm 0.01 & 44.77 \pm 0.02 & 44.77 \pm 0.02 & 45.55 & 45.50 \pm 0.13 & 44.46 \\ 244 & 42.27 \pm 0.01 & 44.99 \pm 0.01 & 44.77 \pm 0.02 & 45.55 & 45.50 \pm 0.13 & 44.45 \\ 244 & 42.27 \pm 0.02 & 44.77 \pm 0.02 & 44.88 \pm 0.01 & 45.54 \pm 0.13 & 44.24 \\ 44.24 & 44.54 & 44.54 & 44.84 \pm 0.01 & 45.54 & $	2220 2227	$< 39.82 \pm 0.17$ $< 39.82 \pm 0.17$	44.58 ± 0.01 44.58 ± 0.01	44.46 ± 0.02	44.02 ± 0.02 44.40 ± 0.02	44.77	45.24 ± 0.12 45.24 ± 0.12	44.11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2228	$< 39.85 \pm 0.17$	44.89 ± 0.01	44.80 ± 0.01	44.75 ± 0.01	44.95	45.23 ± 0.12	44.44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2229	$< 39.89 \pm 0.17$	44.43 ± 0.03	44.28 ± 0.03	44.31 ± 0.03	44.76	45.27 ± 0.12	44.21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2230	$< 39.90 \pm 0.17$	44.20 ± 0.03	44.07 ± 0.04	44.19 ± 0.03	44.75	45.24 ± 0.12	44.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2231	$< 39.92 \pm 0.17$	44.71 ± 0.01	44.55 ± 0.02	44.56 ± 0.02	45.37	45.54 ± 0.13	43.79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2232	$< 39.93 \pm 0.17$	45.01 ± 0.01	44.92 ± 0.01	44.95 ± 0.01	45.60	45.71 ± 0.13	44.69
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2233	$< 39.97 \pm 0.17$	44.50 ± 0.02	44.45 ± 0.02	44.48 ± 0.02	45.20	45.31 ± 0.13	43.66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2234 2225	40.39 ± 0.03 $\sim 30.07 \pm 0.17$	44.70 ± 0.01 44.72 ± 0.02	44.72 ± 0.01 44.57 ± 0.02	44.70 ± 0.01 44.50 ± 0.02	40.72	40.70 ± 0.13 45.35 ± 0.12	44.00 /3.02
$\begin{array}{c} 2237 < 40.00 \pm 0.17 & 44.62 \pm 0.02 & 44.56 \pm 0.02 & 44.55 \pm 0.02 & 45.22 & 45.38 \pm 0.13 & 44.42 \\ 2238 < 40.01 \pm 0.17 & 44.81 \pm 0.02 & 44.68 \pm 0.02 & 44.65 \pm 0.02 & 45.32 & 45.55 \pm 0.13 & 44.42 \\ 2239 & 43.01 \pm 0.01 & 44.82 \pm 0.01 & 44.71 \pm 0.02 & 44.66 \pm 0.02 & 45.09 & 45.45 \pm 0.13 & 44.66 \\ 2240 < 40.03 \pm 0.17 & 44.94 \pm 0.01 & 44.78 \pm 0.02 & 44.77 \pm 0.02 & 45.68 & 45.77 \pm 0.13 & 44.39 \\ 2241 & 40.19 \pm 0.06 & 44.53 \pm 0.02 & 44.42 \pm 0.03 & 44.34 \pm 0.03 & 45.01 & 45.44 \pm 0.13 & 44.22 \\ 2242 & 42.52 \pm 0.01 & 44.90 \pm 0.01 & 44.77 \pm 0.01 & 44.77 \pm 0.02 & 45.55 & 45.50 \pm 0.13 & 44.43 \\ 2244 & 42.27 \pm 0.02 & 44.79 \pm 0.01 & 44.75 \pm 0.02 & 44.88 \pm 0.01 & 45.56 & 45.75 \pm 0.13 & 44.48 \\ \end{array}$	⊿⊿30 2236	$< 39.99 \pm 0.17$ $< 39.99 \pm 0.17$	44.54 ± 0.02	44.46 ± 0.03	44.47 ± 0.03	45.10	45.65 ± 0.13	44.13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2237	$< 40.00 \pm 0.17$	44.62 ± 0.02	44.56 ± 0.02	44.55 ± 0.02	45.22	45.38 ± 0.13	44.42
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2238	$< 40.01 \pm 0.17$	44.81 ± 0.02	44.68 ± 0.02	44.65 ± 0.02	45.32	45.55 ± 0.13	44.09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2239	43.01 ± 0.01	44.82 ± 0.01	44.71 ± 0.02	44.76 ± 0.02	45.09	45.45 ± 0.13	44.66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2240	$< 40.03 \pm 0.17$	44.94 ± 0.01	44.78 ± 0.02	44.77 ± 0.02	45.68	45.77 ± 0.13	44.39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2241	40.19 ± 0.06	44.53 ± 0.02	44.42 ± 0.03	44.34 ± 0.03	45.01	45.44 ± 0.13	44.22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2242	42.52 ± 0.01	44.90 ± 0.01	44.77 ± 0.01	44.77 ± 0.02	45.55 45.50	45.50 ± 0.13	44.43
	$\frac{2243}{2244}$	$< 40.09 \pm 0.17$ 42.27 ± 0.02	44.00 ± 0.01 44.79 ± 0.01	44.01 ± 0.02 44.75 ± 0.02	44.08 ± 0.01 44.84 ± 0.01	45.00 45.21	40.70 ± 0.13 45.80 ± 0.13	44.00 44.83

Fortsetzung nächste Seite

Fortsetzung von vorheriger Seite							
BSC	Radio		Infrarot	Infrarot Optisch		ptisch	Röntgen
	$\log \nu L_R$	$\log \nu L_{K_s}$	$\log \nu L_H$	$\log \nu L_J$	$\log \nu L_V$	$\log \nu L_B$	$\log \nu L_X$
2245	42.19 ± 0.01	44.68 ± 0.02	44.56 ± 0.02	44.59 ± 0.02	45.11	45.46 ± 0.13	44.14
2246	$< 40.13 \pm 0.17$	44.68 ± 0.02	44.63 ± 0.02	44.63 ± 0.02	45.32	45.59 ± 0.13	44.19
2247	43.14 ± 0.01	44.99 ± 0.01	44.92 ± 0.02	45.02 ± 0.01	45.67	45.86 ± 0.13	44.86
2248	$< 40.18 \pm 0.17$	44.70 ± 0.02	44.57 ± 0.03	44.64 ± 0.02	45.39	45.59 ± 0.13	44.02
2249	$< 40.21 \pm 0.17$	45.08 ± 0.01	44.91 ± 0.02	44.92 ± 0.02	45.52	45.87 ± 0.13	44.78
2250	$< 40.22 \pm 0.17$	44.93 ± 0.01	44.95 ± 0.02	45.01 ± 0.02	45.74	45.76 ± 0.13	44.71
2251	$< 40.23 \pm 0.17$	44.69 ± 0.02	44.61 ± 0.03	44.68 ± 0.02	45.45	45.80 ± 0.13	44.81
2252	$< 40.25 \pm 0.17$	44.90 ± 0.02	44.77 ± 0.02	44.78 ± 0.02	45.16	45.87 ± 0.13	44.77
2253	$< 40.26 \pm 0.17$	44.52 ± 0.04	44.35 ± 0.04	44.39 ± 0.04	44.99	45.63 ± 0.13	44.18
2254	$< 40.29 \pm 0.17$	44.71 ± 0.02	44.65 ± 0.03	44.60 ± 0.03	45.67	45.78 ± 0.13	44.23
2255	$< 40.29 \pm 0.17$	44.75 ± 0.02	44.72 ± 0.03	44.81 ± 0.02	45.56	45.75 ± 0.13	44.46
2256	42.91 ± 0.01	44.84 ± 0.02	44.72 ± 0.03	44.74 ± 0.02	45.59	45.81 ± 0.13	44.60
2257	42.42 ± 0.01	44.65 ± 0.02	44.65 ± 0.03	44.70 ± 0.02	45.37	45.69 ± 0.14	44.27
2258	43.14 ± 0.01	44.86 ± 0.02	44.84 ± 0.02	44.84 ± 0.02	45.59	46.05 ± 0.14	45.18
2259	$< 40.41 \pm 0.17$	44.82 ± 0.03	44.81 ± 0.03	44.78 ± 0.03	45.76	45.90 ± 0.14	44.68
2260	$< 40.42 \pm 0.17$	44.93 ± 0.02	44.82 ± 0.03	44.74 ± 0.02	45.69	45.95 ± 0.14	44.62
2261	$< 40.43 \pm 0.17$	44.78 ± 0.02	44.70 ± 0.03	44.70 ± 0.03	45.37	45.85 ± 0.14	44.68
2262	$< 40.44 \pm 0.17$	45.06 ± 0.02	44.91 ± 0.02	44.94 ± 0.02	45.66	45.81 ± 0.14	44.51
2263	$< 40.47 \pm 0.17$	44.69 ± 0.03	44.67 ± 0.04	44.71 ± 0.03	45.37	45.84 ± 0.14	44.60
2264	$< 40.48 \pm 0.17$	45.08 ± 0.02	44.98 ± 0.02	45.00 ± 0.02	45.84	46.09 ± 0.14	44.76
2265	$< 40.48 \pm 0.17$	44.79 ± 0.03	44.85 ± 0.02	44.86 ± 0.02	45.68	46.01 ± 0.14	44.95
2266	42.99 ± 0.01	45.02 ± 0.02	45.04 ± 0.01	45.14 ± 0.01	45.65	46.09 ± 0.14	45.20
2267	$< 40.49 \pm 0.17$	45.07 ± 0.02	44.96 ± 0.02	44.93 ± 0.01	45.68	46.10 ± 0.14	44.50
2268	$< 40.54 \pm 0.17$	44.70 ± 0.03	44.71 ± 0.03	44.73 ± 0.03	45.32	45.95 ± 0.14	44.28
2269	42.50 ± 0.01	45.24 ± 0.01	45.32 ± 0.01	45.46 ± 0.01	46.03	46.42 ± 0.14	45.11
2270	$< 40.59 \pm 0.17$	44.86 ± 0.03	44.84 ± 0.03	44.85 ± 0.03	45.80	45.90 ± 0.15	44.63
2271	$< 40.59 \pm 0.17$	44.65 ± 0.03	44.67 ± 0.04	44.75 ± 0.03	45.67	45.94 ± 0.15	44.43
2272	$< 40.59 \pm 0.17$	45.05 ± 0.01	44.92 ± 0.02	44.91 ± 0.02	45.35	45.94 ± 0.15	44.72
2273	41.47 ± 0.02	44.73 ± 0.03	44.76 ± 0.04	44.74 ± 0.03	45.48	45.95 ± 0.15	44.55
2274	$< 40.66 \pm 0.17$	44.92 ± 0.02	44.91 ± 0.03	44.96 ± 0.02	45.92	46.04 ± 0.15	44.66
2275	43.56 ± 0.01	44.92 ± 0.02	44.87 ± 0.03	44.94 ± 0.02	45.79	46.00 ± 0.15	44.71
2276	43.26 ± 0.01	45.04 ± 0.02	45.06 ± 0.03	45.14 ± 0.02	45.34	46.17 ± 0.16	44.56
2277	44.17 ± 0.01	45.63 ± 0.01	45.56 ± 0.01	45.49 ± 0.01	45.95	46.01 ± 0.16	45.10
2278	43.05 ± 0.01	45.03 ± 0.02	45.01 ± 0.03	45.06 ± 0.02	46.09	46.15 ± 0.16	45.06
2279	43.31 ± 0.01	45.04 ± 0.02	45.10 ± 0.02	45.17 ± 0.01	46.13	46.29 ± 0.17	45.29
2280	$< 40.77 \pm 0.17$	44.94 ± 0.02	44.95 ± 0.03	45.01 ± 0.02	45.66	46.05 ± 0.17	44.67
2281	42.47 ± 0.01	45.42 ± 0.01	45.27 ± 0.02	45.30 ± 0.02	45.95	46.23 ± 0.17	45.00
2282	43.89 ± 0.01	45.18 ± 0.02	45.17 ± 0.02	45.31 ± 0.01	45.92	46.23 ± 0.17	45.16
2283	$< 40.81 \pm 0.17$	45.14 ± 0.02	44.99 ± 0.03	45.09 ± 0.02	46.04	46.09 ± 0.17	44.70
2284	43.68 ± 0.01	45.24 ± 0.02	45.19 ± 0.02	45.40 ± 0.02	46.05	46.22 ± 0.17	45.15
2285	$< 40.84 \pm 0.17$	44.87 ± 0.03	44.95 ± 0.03	45.05 ± 0.02	45.79	46.10 ± 0.17	44.66
2286	43.90 ± 0.01	45.14 ± 0.02	45.10 ± 0.03	45.35 ± 0.01	46.05	46.26 ± 0.18	45.00
2287	$< 40.92 \pm 0.17$	45.09 ± 0.02	45.11 ± 0.03	45.29 ± 0.02	46.04	46.29 ± 0.18	44.64
2288	42.51 ± 0.01	45.32 ± 0.01	45.31 ± 0.02	45.51 ± 0.01	46.31	46.27 ± 0.19	44.87
2289	$< 40.97 \pm 0.17$	44.84 ± 0.03	44.76 ± 0.04	45.01 ± 0.02	45.93	46.21 ± 0.19	44.90
2290	41.16 ± 0.06	45.42 ± 0.02	45.47 ± 0.02	45.75 ± 0.01	46.24	46.55 ± 0.19	45.23
2291	44.74 ± 0.01	45.55 ± 0.01	45.52 ± 0.01	45.58 ± 0.01	46.08	46.78 ± 0.20	46.29
2292	41.68 ± 0.02	45.26 ± 0.02	45.30 ± 0.02	45.46 ± 0.01	46.34	46.56 ± 0.21	45.39
2293	41.38 ± 0.05	45.50 ± 0.01	45.45 ± 0.01	45.64 ± 0.01	46.18	46.51 ± 0.22	44.98
2294	44.18 ± 0.02	45.49 ± 0.01	45.47 ± 0.01	45.60 ± 0.01	46.07	46.40 ± 0.22	45.63
2295	$< 41.21 \pm 0.17$	45.51 ± 0.01	45.56 ± 0.02	45.74 ± 0.01	46.12	46.71 ± 0.23	45.25
2296	42.64 ± 0.01	45.85 ± 0.01	45.94 ± 0.01	46.09 ± 0.01	47.02	47.09 ± 0.24	45.51
2298	$< 41.76 \pm 0.17$	45.81 ± 0.01	45.83 ± 0.02	45.95 ± 0.01	46.99	47.03 ± 0.41	45.85
2299	45.02 ± 0.01	45.46 ± 0.02	45.47 ± 0.03	45.49 ± 0.02	46.40	46.83 ± 0.44	47.00

5.2.4 Diskussion der Leuchtkraftverteilungen

In Abbildung 5.3 sind die Verteilungen der logarithmischen Leuchtkräfte log νL dargestellt. Der Anteil der AGN mit $M_B \leq -23$ beim BSC-AGN-Datensatz besitzt stets auch eine hohe Leuchtkraft in fast allen untersuchten Frequenzbereichen. Dies ist sicherlich auch darauf zurückzuführen, dass diese AGN unter den hohen Rotverschiebungen zu finden sind und durch die untere Grenze im Röntgenbereich und optischen Fluss höhere Leuchtkräfte haben müssen. Der Aspekt der unterschiedlichen Leuchtkraftverteilungen wird im nächsten Kapitel über den Einfluss der absoluten Helligkeit M_B auf die SED noch einmal aufgegriffen.

Abbildung 5.3: Die Verteilungen der Leuchtkräfte des BSC-AGN-Datensatzes. Dabei ist der Anteil der AGN mit $M_B \leq -23$ am gesamten BSC-AGN-Datensatz mit rot schraffiert. In (b) und (f) sind die Verteilungen der jeweiligen Leuchtkräfte von Elvis et al. (1994) blau schraffiert.

Abbildung 5.4: Die optische Leuchtkraft $\log(\nu L_{\nu B})$ und die Röntgenleuchtkraft $\log(\nu L_{\nu X})$ des BSC-AGN-Datensatzes sind korreliert. Die AGN mit $M_B \leq -23$ sind durch ein "+" gekennzeichnet.

Im Infrarotbereich (*J*-, *H*- und K_s -Band) ergeben sich drei ähnliche Verteilungen der logarithmischen Leuchtkräfte, mit einem Mittelwert von $\log \nu L_{\nu} \approx 44.25 \text{ erg s}^{-1}$. Zwischen den Infrarotbereichen verändern sich die Leuchtkrafteigenschaften aller AGN nicht sehr stark, und der Anteil der AGN mit $M_B \leq -23$ unterscheidet sich deutlich von der Gesamtverteilung.

Im Radiobereich ist dieser Unterschied in den Verteilungen der AGN nicht zu erkennen. Die Anzahl der AGN für die Verteilung der Radioleuchtkräfte ist geringer als in den anderen Verteilungen, aufgrund der N = 128 bei NVSS nicht nachgewiesenen BSC-AGN-Objekte. Die Gesamtverteilung der Radioleuchtkräfte zeigt die Bimodalität, die auch schon für die Radiolautstärke zu erkennen war. Ein Vergleich der Radioleuchtkräfte mit den optischen Leuchtkräften und den Röntgenleuchtkräften zeigt, dass AGN mit hohen Radioleuchtkräften auch in den anderen beiden Frequenzbereichen eine hohe Leuchtkraft besitzen. Die Verhältnisse zwischen den Frequenzbereichen Radio – Optisch und Radio – Röntgen, also Spektralindizes Radio – Optisch und Radio – Röntgen, also Spektralindizes Radio – Optisch und Radio – Röntgen, also Spektralindizes Radio – AGN ähnlich sein.

Bei der Verteilung der Röntgenleuchtkrafte in der Abbildung 5.3(f) sind die Daten von Elvis et al. (1994) durch eine blaue Schraffierung gekennzeichnet. Der Verteilung ist zu entnehmen, dass in der Arbeit von Elvis et al. (1994) mehr AGN hoher Röntgenleuchtkraft verwendet werden. Der BSC-AGN-Datensatz besitzt hingegen einen Großteil Röntgenquellen mit geringeren Leuchtkräften. Der Einfluss der unterschiedlichen Röntgenleuchtkräfte auf die SED wird noch weiter zu untersuchen sein.

In der Abbildung 5.4 sind die Leuchtkraftverteilungen des *B*-Bandes und des Röntgenbereichs gegeneinander aufgetragen. Die Korrelation der Leuchtkräfte ist deutlich zu erkennen. Die Steigung der Regressionsgeraden beträgt:

 $\log(L_{\nu B}) = 0.97(\pm 0.08) \log(L_{\nu X}) + 4.7(\pm 3.1)$

Die Regression wurde über den Bereich $25 \le \log(L_{\nu X}) \le 28$ durchgeführt, und wird

(a) Korrelation zwischen der Infrarotleuchtkraft $\log(L_{\nu J})$ und der Röntgenleuchtkraft $\log(L_{\nu X})$

(b) Zusammenhang zwischen Radioleuchtkraft $\log(L_{\nu R})$ und der Röntgenleuchtkraft $\log(L_{\nu X})$

Abbildung 5.5: Es existiert auch für die Leuchtkräfte des Infrarotbereichs eine Korrelation zur Röntgenleuchtkraft $\log(L_{\nu X})$. Die Radioleuchtkräftezeigen keine eindeutige Korrelation. Die AGN mit $M_B \leq -23$ sind durch ein "+" gekennzeichnet.

in Abbildung 5.4 durch die rote Linie verdeutlicht. Die Steigung von (0.97 ± 0.08) unterscheidet sich von Werten, die in Arbeiten von Wilkes et al. (1999) mit einer Steigung (1.35 ± 0.15) im Bereich $26.5 \leq \log(L_{\nu X}) \leq 28.0$ und Vignali et al. (2003) mit einer Steigung (1.33 ± 0.06) im Bereich $29 \leq \log(\nu L_{\nu X}) \leq 32$ ermittelt wurden. Die Korrelation zwischen den Leuchtkräften im Optischen und Röntgen scheint für alle AGN zu gelten (La Franca et al. 1995). Es wird angenommen, dass harte Röntgenstrahlung aus dem zentralen Bereich des AGN durch kühle dichte Wolken reprozessiert wird. Diese Wolken strahlen im weichen Röntgenbereich, bis hinein in den optischen Bereich, die Energie wieder ab. Der Mechanismus der Wiederabstrahlung im optischen und weichen Röntgenbereich ist für beide Bereiche stark korreliert.

Die Leuchtkräfte im Infrarotbereich zeigen eine ähnlich starke Korrelation mit den Röntgenleuchtkräften $\log(L_{\nu X})$ (Abbildung 5.5(a)), wie die Leuchtkräfte im *B*-Band. Die Steigung der Regressionsgeraden beträgt: $\log(L_{\nu J}) = 0.71(\pm 0.12) \log(L_{\nu X}) + 11.7(\pm 3.2)$

für den Bereich $25 \leq \log(L_{\nu X}) \leq 28$. Für diese Korrelation wurden bisher keine Vergleichsarbeiten gefunden. Aufgrund der Nähe des Infrarotbereiches zum optischen Bereich, konnte diese Korrelation jedoch vermutet werden.

Für die Radioleuchtkräfte $\log(L_{\nu R})$ ergibt sich nur eine schwache Korrelation zur Röntgenleuchtkraft $\log(L_{\nu X})$. Die bimodale Verteilung der Radioleuchtkräfte (Abb. 5.3(d)) ist in Abbildung 5.5(b) wiederzufinden. Im Bereich 31.25 $\leq \log(L_{\nu R}) \leq 32.9$ sind nur 8 BSC-AGN-Objekte enthalten. Im Leuchtkraftbereich darüber sind 26 BSC-AGN-Objekte, darunter 91 BSC-AGN-Objekte enthalten. Aus dieser bimodalen Verteilung erwarte ich einen Verlaufsunterschied für die mittlere SED der radiolauten und radioleisen BSC-AGN-Objekte von zwei bis drei Größenordnungen.

5.2.5 Der Spektralindex α

Die spektrale Energieverteilung eines AGN kann auch durch Bildung von Spektralindiezes grob beschrieben werden. Ein Vergleich der Flüsse in den verschiedenen Frequenzbereichen wird durch die Bildung eines Spektralindexes vorgenommen, der die Steigung des Spektrums über diesen Frequenzbereich repräsentiert. Der Spektralindex α_{ν_1,ν_2} lässt sich durch Bildung des Verhältnisses der beiden Flüsse F_1 und F_2 und der beiden zugehörigen Frequenzen ν_1 und ν_2 nach:

$$\alpha = \frac{\log F_1 - \log F_2}{\log \nu_1 - \log \nu_2} = \frac{\log\left(\frac{F_1}{F_2}\right)}{\log\left(\frac{\nu_1}{\nu_2}\right)} \tag{5.18}$$

berechnen. Beim BSC-AGN-Datensatz gibt es einen Radiodatenpunkt, drei Infrarotdatenpunkte, zwei optische Datenpunkte und einen Röntgendatenpunkt, für die sich verschiedene Spektralindizes bilden lassen. Ein sehr häufig verwendeter Spektralindex ist der Index $\alpha_{ox} = \log(F_{2 \text{ keV}}/F_{2500})/2.605$, der das Verhältnis der Flüsse bei 2500 Å und bei 2 keV angibt (Tananbaum et al. 1979). Desweiteren werden die Indizes zwischen Radio- und Röntgenbereich ($\alpha_{rx} = \log(F_{5GHz}/F_{2 \text{ keV}})/5.38$) und Radio- und optischen Bereich ($\alpha_{ro} = \log(F_{5GHz}/F_{2500})/5.38$) gebildet. Diese häufig verwendeten Spektralindizes sind jedoch nur ein Teil der möglichen und interessanten Flussverhältnisse. Die verfügbaren Infrarotdaten des 2MASS ermöglichen auch Flussverhältnisse mit dem Infrarotbereich zu bilden. Zwischen Infrarot- (H) und Röntgenbereich ($\alpha_{ix} = \log(F_H/F_{2 \text{ keV}})/3.43$) und Infrarot- (H) und Radiobereich ($\alpha_{ri} = \log(F_{5 \text{ GHz}}/F_{\text{H}})/5.11$) werden Spektralindizes für den BSC-AGN-Datensatz gebildet.

Der optischen Fluss bei 2500 Å ist nicht bekannt, da das verwendete *B*-Band bei etwa 4360 Å seine größte Empfindlichkeit besitzt. Um dennoch den Spektralindex α_{ox} bilden zu können, ist der Verlauf des Spektrum des AGN von rund 4400 Å nach 2500 Å zu extrapolieren. Wie schon bei der Durchführung der K-Korrektur, verwende ich die Spektralindizes von Wisotzki et al. (2000). Dabei wird auch wieder in zwei Rotverschiebungsbereiche unterteilt, um den Fluss mit den beiden unterschiedlichen Spektralindizes richtig berechnen zu können. Durch die nachfolgende Gleichung ergibt sich dann der Fluss des AGN bei $\lambda = 2500$ Å.

$$F_{2500\,\text{\AA}} = 10^{0.245 \cdot \alpha} F_{4400\,\text{\AA}} \tag{5.19}$$

Mit dieser Bestimmung der Flusses bei 2500 Å lässt sich nun der Spektralindex α_{ox} für die BSC-AGN-Objekte berechnen. Der Fluss $F_{2500 \text{ Å}}$ wird auch für die Bildung der Indizes α_{ro} und α_{io} verwendet.

Die Daten von Elvis et al. (1994) sind auch dazu geeignet, um die oben angesprochenen Spektralindizes α_{ox} , α_{ro} und α_{ir} zu bilden. Die Werte sind in Tabelle 5.3 zusammengefasst.

Unter den Begriffen "all", "median", "loud" und "quiet" sind bei Elvis et al. (1994) verschiedene mittlere spektrale Energieverteilungen zu verstehen, bei denen eine unterschiedliche Anzahl von AGN berücksichtigt wird. Zwischen den ermittelten Spektralindizes aus allen AGN (all) und den AGN der Median-Verteilung (median), gibt es keine großen Unterschiede. Die Spektralindizes der "radiolauten" (loud) und "radioleisen" (quiet) AGN unterschieden sich jedoch von diesen Werten. Aufgrund der unterschiedlichen Radioleuchtkräfte dieser AGN sind die Unterschiede in den Spektralindizes des BSC-AGN-Datensatzes dargestellt. Zum Vergleich wurden die Spektralindizes der Median-Verteilung (mean) von Elvis et al. (1994) durch die eingezeichnete blaue Linie gekennzeichnet.

Abbildung 5.6: Die Verteilungen der Spektralindizes des BSC-AGN-Datensatzes. Dabei ist der Anteil der AGN mit $M_B \leq -23$ am gesamten BSC-AGN-Datensatz mit rot schraffiert. Die blaue Linie entspricht dem gemittelten Spektralindex der 24 AGN, die auch in der Arbeit von Elvis et al. (1994) untersucht wurden.

Für die Bildung der Spektralindizes mit Flüssen aus dem Radiobereich sind nur die N = 125 nachgewiesenen AGN verwendet worden. Da für die restlichen AGN nur eine obere Grenze im Fluss bekannt ist, würde ein Spektralindex ebenfalls nur als Grenzwert dienen und besitzt damit nur bedingte Aussagekraft. Für die anderen Indizes sind alle N = 253 BSC-AGN-Objekte verwendet worden. Es wurde bei der Darstellung der Verteilungen (Abbildung 5.6) zwischen AGN mit $M_B \leq -23$ und $M_B > -23$ unterschieden. Dies entspricht einer Trennung von Quasaren und Seyfert-Galaxien, wie sie häufig vorgenommen wird (Schmidt & Green 1983). Der rot schraffierte Bereich stellt den Anteil der AGN mit $M_B \leq -23$ an der Gesamtverteilung dar.

Für die 24 AGN, die im BSC-AGN-Datensatz und bei Elvis et al. (1994) verwendet werden, wurde ein mittlerer Spektralindex gebildet und in Abbildung 5.6 mit einer vertikalen Linie eingezeichnet. Bei den Leuchtkräften zeigte sich eine asymmetrische

Index	all	median	loud	quiet
$lpha_{ m ro}$	-0.04	-0.04	0.42	-0.25
$\alpha_{\rm ox}$	1.35	1.37	1.30	1.38
$\alpha_{\rm rx}$	-0.42	-0.42	-0.71	-0.28
$\alpha_{ m ri}$	-0.12	-0.13	0.43	-0.37
α_{ix}	1.12	1.14	1.08	1.15

Tabelle 5.3: Die ermittelten Spektralindizes von Elvis et al. (1994) aus den SED-Daten für alle AGN (all), der Median-SED (mean), den ,radiolauten' AGN (loud) und den ,radioleisen' AGN (quiet).

Verteilung der AGN mit $M_B \leq -23$ gegenüber der Gesamtverteilung (Abbildung 5.3(b)). Bei den Spektralindizes gibt es diese Asymmetrie nicht. Daraus folgt, dass die Steigungen zwischen den spektralen Energiebereichen für alle AGN ähnlich sind. Das Auswahlkriterium der absoluten Helligkeit M_B hat keinen signifikanten Einfluss auf die Verteilungen der einzelnen Spektralindizes. Damit erwarte ich für die spektralen Energieverteilungen ähnliche Verläufe für die BSC-AGN-Objekte mit $M_B \leq -23$ oder $M_B > -23$.

Die Verteilungen der Indizes $\alpha_{\rm ro}$, $\alpha_{\rm ri}$ und $\alpha_{\rm xr}$ sind sehr breit gestreut, bedingt durch die große Streuung der Radioleuchtkräfte. Beim Spektralindex $\alpha_{\rm ox}$ befindet sich der Referenzspektralindex von Elvis et al. (1994) aus Tabelle 5.3 im unteren Drittel der Verteilung. Dies ist ein weiterer Hinweis auf die unterschiedlichen Röntgenleuchtkräfte zwischen meiner Arbeit und Elvis et al. (1994), wie auch schon in Abschnitt 5.2.4 bei der Diskussion der Leuchtkraftverteilungen erwähnt. Die Referenzspektralindizes aus Tabelle 5.3 sind nicht mit dem jeweiligen gemittelten Spektralindex der gemeinsamen 24 AGN vergleichbar, sondern geben nur ein Eindruck vom Einfluss der unterschiedlichen Datengrundlage und der gewählten Umrechnungen.

6. Mittlere spektrale Energieverteilung – MED

Die spektralen Informationen der AGN des BSC-AGN-Datensatzes wurden im letzten Abschnitt soweit bearbeitet, dass nun die Konstruktion der SED vorgenommen werden kann. Der Verlauf der SED kann nun bezüglich der absoluten Helligkeit M_B oder der Radiolautstärke R untersucht werden. Es sind ebenfalls verschiedene Spektralindizes gebildet worden, die bei einer Korrelation mit den Leuchtkräften auf Änderungen des Verlaufs der SED schließen lassen würden.

Der BSC-AGN-Datensatz bietet die Möglichkeit die AGN in verschiedene Leuchtkraftgruppen einzuteilen, und immer noch eine ausreichende Anzahl von AGN pro Leuchtkraftgruppe zu haben, um statistisch besser gesicherte Aussagen zu erzielen. Dies ist ein Vorteil gegenüber der Arbeit von Elvis et al. (1994), die mit N= 47 AGN eine vergeleichsweise geringere AGN-Anzahl für die Statistik bietet. Jedoch verfügt Elvis et al. (1994) über ausführlichere Informationen im gesamten Spektralbereich. Auch aktuelle Arbeiten von Mas-Hesse et al. (1995), Ho (1999), Alonso-Herrero et al. (2003), Stepanian et al. (2003) und Kuraszkiewicz et al. (2003), die multifrequente Eigenschaften von AGN untersuchen, verfügen nicht über eine so hohe Anzahl von AGN für die Konstruktion einer SED.

Wird der Verlauf der SED über alle AGN gemittelt, so ergibt sich ein statistisches Gesamtbild der Emissionprozesses des AGN. Individuelle Unterschiede der AGN verschwinden dagegen in dieser Wahl der Darstellung. Im Anhang B sind die individuellen spektralen Energieverteilungen für alle BSC-AGN-Objekte enthalten, bei denen es beachtliche Streuungen im Verlauf der SED geben kann (siehe z.B. NGC 6521 (BSC2065) in Abblidung B.3 und S5 0836+71 (BSC2299) in Abblidung B.22).

Mit den Ergebnissen der Arbeit von Elvis et al. (1994) als Referenz, werden die Datenpunkte meiner Arbeit stets leicht zu bewerten sein. Elvis et al. (1994) bilden eine "quasar mean energy distribution" (MED) durch Normierung der individuellen, sternenlichtsubtrahierten SED aller AGN und einer Glättung des Verlaufs durch einen $\Delta \log(\nu) = 0.2$ Boxcarfilter. Die Berechnung des Mittels ist mit der Kaplan-Meier-Kalkulation (Feigelson & Nelson 1985; Isobe et al. 1986) vorgenommen worden. Hieraus ergaben sich 68%, 90% und 100% Percentile-Konturen, die die durchschnittliche Streuung des Verlaufs der MED wiederspiegeln. Die Percentile-Konturen sind nur für die "median"-MED verfügbar, nicht für die "all"-MED. Desweiteren wurde in der Arbeit von Elvis et al. (1994) auch zwischen "radiolauten' und "radioleisen' AGN unterschieden. Die unterschiedlichen Verläufe der "radiolauten' und "radioleisen' SED sind in Abbildung 2.3 zusammen mit der "median"-MED dargestellt. Die Normierung der MED erfolgt bei 1.25 μ m, der ungefähren Lage des Nahinfrarotminimums (Koratkar & Blaes 1999). Diese Normierung auf 1.25 μ m wird für meine Daten ebenfalls durchgeführt. Durch diese Normierung laufen die Percentilkurven an dieser Stelle zusammen und die Verteilung der Leuchtkraftdatenpunkte im *J*-Band verschwindet. Es wird jedoch durch die Abbildungen 5.3(a) und 6.1 deutlich, dass die Streuung der Leuchtkräfte L_J im *J*-Band von der gleichen Größenordnung sind, wie in den anderen Bändern.

Im BSC-AGN-Datensatz sind N = 24 AGN enthalten, die auch in der Arbeit von Elvis et al. (1994) verwendet wurden. Um instrumentelle Effekte und Einflüsse der Umrechungen ausschließen zu können, wird die spektrale Energieverteilung des BSC-AGN-Datensatzes mithilfe dieser 24 AGN kalibriert. Bei dieser Kalibration wird die Differenz aus der "median"-MED von Elvis et al. (1994) und dem gemittelten, normierten SED-Datenpunkt der 24 AGN der BSC-AGN-Datensatzes im Infrarot-, Optischen- und Röntgenbereich bestimmt. Der sich ergebene Unterschied kann nur mit den verwendeten Daten und deren Bearbeitung zusammenhängen und ist nicht physikalischer Natur. Für den Vergleich der spektralen Energieverteilungen wird diese Korrektur stets vorgenommen. Aufgrund der Normierung der Leuchtkräfte auf das J-Band beträgt die Korrektur hier Null. Für das H- und K_s -Band beträgt sie jeweils $\approx 30\%$ der Leuchtkräfte, im V-Band $\approx 50\%$, im B-Band etwa ein Faktor Zwei und bei 2 keV $\approx 10\%$.

6.1 Die Energieverteilung der BSC-AGN-Objekte

Mit den gewonnenen Daten über die Leuchtkräfte L der BSC-AGN-Objekte aus Kapitel 5 lässt sich nun die spekrale Energieverteilung - SED konstruieren. Die Gesamtverteilung aller AGN im $\log \nu L_{\nu}$ - $\log \nu$ -Diagramm ist in der Abbilung 6.1 zu sehen. Es fällt dabei schnell ins Auge, das die Radioleuchtkräfte $L_{\rm R}$ und auch die Röntgenleuchtkräfte $L_{\rm X}$ der AGN einen großen Wertebereich überspannen. Die Leuchtkraftverteilungen aus Abschnitt 5.2.4 (Abbildung 5.3) zeigen, dass bei der Röntgenleuchtkraft $L_{\rm X}$ jedoch nur wenige Objekte für die breite Verteilung verantwortlich sind. Die Leuchtkräfte des Nahinfrarotbereichs überspannen einen kleineren Wertebereich. Es sind bei einigen AGN nur oberen Grenzen in der Radioleuchtkraft bekannt, der zugehörige Leuchtkraftbereich wurde in Abbildung 6.1 durch einen senkrechten Pfeil gekennzeichnet. Im Vergleich zur eingezeichneten SED aller AGN von Elvis et al. (1994) liegen die Schwerpunkte der Verteilungen etwas tiefer, folgen aber dennoch dem Verlauf. Aus den Leuchtkraftverteilungen in Abbildung 5.3 ging schon hervor, dass in der Arbeit von Elvis et al. (1994) leuchtkräftigere AGN verwendet wurden, und somit die Verteilungsschwerpunkte sich leicht unterscheiden. Aus dieser Art der Darstellung der SED geht nicht hervor, welche Leuchtkraftdatenpunkte zusammengehören. Für individuelle BSC-AGN-Objekte können die Leuchtkraftdatenpunkte in den verschiedenen Frequenzbereich stark streuen, und tiefliegende Röntgenleuchtkraftdatenpunkte zu den höherliegenden Leuchtkraftdatenpunkten im Infraroten gehören. Die genaue Zugehörigkeit ergibt sich nur aus den individuellen spektralen Energieverteilungen der BSC-AGN-Objekte im Anhang B.

Abbildung 6.1: Die spekrale Energieverteilung aller BSC-AGN-Objekte. Zum Vergleich wurde die spektrale Energieverteilung aller AGN von Elvis et al. (1994) eingezeichnet (rote Linie). Die Fehler der logarithmischen Leuchtkräfte liegen im Bereich von $\approx 0.5\%$ und sind nicht mit in die Abbilung übernommen. Der senkrechte Pfeil im Radiobereich kennzeichnet den Bereich der oberen Grenzen für BSC-AGN-Objekte ohne Radio-Detektion.

Aus den untersuchten spektralen Energieveteilungen von Quasaren, Seyfert-1- und Seyfert-2-Galaxien und Galaxien mit Sternentstehunggebieten bei Mas-Hesse et al. (1995) geht jedoch hervor, dass die SED von Quasaren bei höheren Leuchtkräften liegt, als dies bei Seyfert-Galaxien der Fall ist. Auch bei Stepanian et al. (2003) findet sich dieser Unterschied wieder. Dies kann mit den Untersuchungen im Abschnitt 5.2.4 über die Leuchtkraftverteilungen des BSC-AGN-Datensatzes bestätigt werden.

Die Beschreibung der SED in Kapitel 2.3 stellt die Grundlage zur Interpretation der Ergebnisse dar. Die Datensammlung für die BSC-AGN-Objekte lässt den spektralen Bereich vom Submillimeterband bis ins mittlere Infrarot aus. In diesem Bereich befindet sich ein Überschuss an Infrarotstrahlung gegenüber einem einfachen Potenzgesetz, der sogenannte "infrared bump" (Koratkar & Blaes 1999). Es gibt in diesem Frequenzbereich ($\nu \approx 10^{12}$ Hz bis $\nu \approx 10^{13}$ Hz) einige wichtige Satellitenmessungen (IRAS, ISO), jedoch ist die erzielte Empfindlichkeit, bzw. Himmelsabdeckung nicht besonders groß. Mit dem "Infrared Astronomical Satellite" (IRAS) wurde 1983 der gesamte Himmel im Wellenbereich von $12 - 100 \ \mu$ m durchsucht (Neugebauer et al. 1984). Dieses Programm ist schon 20 Jahre her und entspricht daher nicht mehr dem Stand der Technik. Eine eindeutige Identifizierung aller BSC-AGN-Objekte und deren zugehöriger, emittierter Fluss ist nicht zuverlässig möglich und es könnten nur obere Grenzen der Flüsse und Leuchtkräfte angeben werden. Daher kann nicht sichergestellt werden, dass für alle N = 253 homogene Daten zur Verfügung stehen, was zum Ausschluß dieses Bereichs führte.

Abbildung 6.2: Die mittlere spektrale Energieverteilung aller BSC-AGN-Objekte mit 1σ -Fehlern und den Verteilungsgrenzen der normierten Leuchtkräfte (Pfeile) ist in blau dargestellt. Als Referenz ist die MED von Elvis et al. (1994) in rot verwendet, sowie die 68% Percentile-Kontur (-.-).

Die spektralen Eigenschaften im Infrarotbereich werden durch die thermische Reemission der Strahlung des optischen/UV/Röntgenkontinuums (Pier & Krolik 1992; Granato & Danese 1994) bestimmt. Im optischen Bereich gibt es nur 2 Datenpunkte im V- und B-Band, wodurch der "big blue bump" (BBB, s.h. Kapitel 2.3) in der SED ebenfalls nicht beschrieben werden kann, wie dies in Arbeiten von Elvis et al. (1994), Mas-Hesse et al. (1995) oder Stepanian et al. (2003) der Fall ist, bei denen zum Teil ausführlichere Informationen über den Optischen- und UV-Bereich gesammelt wurden. Abhängig von der Rotverschiebung z des AGN kann sich der beobachtbare Teil des BBB weiter in den optischen Bereich schieben. Im Einklang mit der Präsenz des BBB kann ein Ansteigen der Leuchtkräfte, und damit der spektralen Energieverteilung, bei den beiden verwendeten Leuchtkraftdatenpunkten erkannt werden.

6.2 Vergleich der BSC-MED mit der Elvis-MED

In Abbildung 6.2 ist die gemittelte, normierten SED des aller AGN des BSC-AGN-Datensatzes (BSC-MED) und der MED von Elvis et al. (1994) (Elvis-MED) dargestellt. Im Rahmen der bestimmten Fehler des BSC-AGN-Datensatzes unterscheiden sich die Verläufe der spektralen Energieverteilungen nicht wesentlich voneinander. Somit bestätigt sich das Ergebnis von Elvis et al. (1994), über den spektralen Energieverlauf von Quasaren. Die Verteilungsgrenzen stellen die maximalen und minimalen Leuchtkräfte in dem jeweiligen Frequenzbereich dar und sind durch ein "<u>↑</u>" und ein "<u>↓</u>" gekennzeichnet. Die weiten Verteilungen im Röntgen- und Radiobereich

Abbildung 6.3: Die mittlere spektralen Datenpunkte aller BSC-AGN-Objekte im Nahinfrarot bis Optischen mit 1σ -Fehlern und den Verteilungsgrenzen der Leuchtkräfte (Pfeile). Die MED von Elvis et al. (1994) mit der 68% Percentile-Kontur ist in rot eingezeichnet.

sind schon in Abbildung 6.1 zu erkennen und werden durch die Normierung nicht aufgehoben. Die Verteilungsgrenzen sollten jedoch nicht überbewertet werden, da hier nur einzelne Objekte einen extremen Einfluss auf den Wertebereich haben. Die erhaltenen spektralen Datenpunkte des BSC-AGN-Datensatzes in Abbilung 6.2 bestätigen die theoretischen Erwartungen des Verlaufs der SED aus Kapitel 2.3. Zum einen ist der Abfall der Leuchtkraft im Radiobereich um einen Faktor 10^2 bis $10^6 (\log \nu L_{\nu} \approx 10^{37} - 10^{44} \text{ erg s}^{-1})$ gegenüber der Leuchtkraft im optischen Bereich $(\log \nu L_{\nu} \approx 10^{45} \text{ erg s}^{-1})$ zu erkennen. Desweiteren der Anstieg der Leuchtkräfte in Richtung größerer Frequenzen im optischen Bereich und das Vorhandensein des Nahinfrarotminimums bei etwa 1.25 μ m. Betrachtet man die Verteilungsgrenzen ("<u>^"</u> und "<u>T</u>"), so kann der Verlauf der individuellen SED vom mittleren Verlauf stark abweichen. Hier müssen individuelle Merkmale der AGN (Radiolautstärke, Muttergalaxie) genauer betrachtet werden, um den Verlauf der individuellen SED exakt beschreiben zu können. Es handelt sich bei der MED nur um ein obere Einhüllende der energetischen Prozesse des AGN, die im Mittel beobachtet werden kann.

An dieser Stelle soll nochmal ein bisher wenig berücksichtigter Aspekt angesprochen werden. Zur Bestimmung der Leuchtkraftdatenpunkte im optischen Bereich wurden im BSC-AGN-Datensatz die *B*-Helligkeiten neu bestimmt. Basierend auf dieser *B*-Helligkeit wurde dann die absolute Helligkeit M_B berechnet. Es handelt sich um eine inhomogene Datensammelung beim BSC-AGN-Datensatz. In der Arbeit von Elvis et al. (1994) ist der Einfluss der umgebenen Muttergalaxie explizit berücksichtigt und es wurde eine entsprechende Korrektur vorgenommen. Aufgrund der verfügbaren

Band	$\begin{array}{c} {\rm Frequenz} \\ {\rm log} \nu \end{array}$	normierte $M_B \le -23$	Leuchtkraft log $M_B > -23$	$g \nu L_{ u}$ Elvis
1.4 GHz	9.15	-4.12 ± 1.14	-5.00 ± 0.44	≈ -5.0
$K_{\rm s}$	14.14	0.18 ± 0.14	0.14 ± 0.15	0.24
H	14.26	0.10 ± 0.08	0.13 ± 0.12	0.10
J	14.38	0	0	0
V	14.74	0.40 ± 0.28	0.05 ± 0.23	0.23
B	14.83	0.50 ± 0.25	0.17 ± 0.27	0.33
2 keV	17.68	-0.36 ± 0.36	-0.85 ± 0.59	-0.38

Tabelle 6.1: Statistik der normierten Leuchkraftdatenpunkte der N = 114 AGN mit $M_B > -23$ und N = 139 AGN mit $M_B \leq -23$ in der BSC-MED von Abbildung 6.4(a) und 6.4(b). Die normierte Leuchtkraft log νL besitzt nur eine relative Einheit. Die Spalte "Elvis" enthält die normierte Leuchtkraft der MED von Elvis et al. (1994).

Daten für den BSC-AGN-Datensatz bleibt der Einfluss der Muttergalaxien auf die Bund V-Helligkeiten unbekannt, und es kann keine Korrektur vorgenommen werden. Die Größenordnung des Einfluss der umliegenden Muttergalaxie entspricht in etwa einem Faktor Zwei. Es kann daher zu einer Überbewertung dieser beiden B- und V-Helligkeiten kommen, wodurch die berechneten Leuchtkräfte ebenfalls zu groß sein könnten. Auch führt eine Aufteilung der AGN in der absoluten Helligkeit M_B zu einer Verschiebung von AGN in die absolut hellere Klassifikationsgruppe der Quasare, aufgrund dieser überbewerteten B- und V-Helligkeiten.

6.2.1 Einfluss der absoluten Helligkeit

Die verschiedenen Detailanalysen über den Verlauf der SED können mit unterschiedlichen Auswahlkriterien vorgenommen werden. Für eine solche Wahl bietet sich im optischen Bereich die absolute Helligkeit $M_B = -21.5 + 5 \log(h_0)$ an. Bei $M_B = -23$ $(h_0 = 0.5)$ wird typischerweise eine Trennung von Quasaren und Seyfert-Galaxien vorgenommen (Schmidt & Green 1983). Diese Wahl hat einen historischen Ursprung und besitzt keinen bestätigten physikalischen Hintergrund. Daher könnte zwar auch ein Selektionskriterium im Röntgenbereich oder im Infraroten gewählt werden, jedoch liegt ein wichtiger Schwerpunkt der astronomischen Forschung in den sehr leicht beobachtbaren optischen Frequenzen. Ein Vergleich der Verteilungen der absoluten Helligkeiten des BSC-AGN-Datensatzes mit den absoluten Helligkeiten von Elvis et al. (1994) wurde in Abschnitt 5.2.1 vorgenommen. Bei Elvis et al. (1994) sind leuchtkraftstärkere AGN, gegenüber dem gesamten BSC-AGN-Datensatz enthalten, der einen größeren Anteil an leuchtkraftschwächeren AGN enthält. Die Erwartung, dass die SED von Elvis et al. (1994) insgesamt höher liegt als die SED des BSC-AGN-Datensatzes, spiegelt sich in der Verteilung der Leuchtkräfte in Abbilung 6.1 wieder.

In Abbildung 6.4 sind die spektralen Energieverteilungen der BSC-AGN-Objekte dargestellt, wobei für N = 139 AGN eine absolute Helligkeit $M_B \leq -23$ gilt (Abb. 6.4(a) und 6.4(c)) und für N = 114 AGN eine absolute Helligkeit $M_B > -23$ (Abb. 6.4(b) und 6.4(d)). In der Tabelle 6.1 sind die Werte der spektralen Leuchtkraftdatenpunkte zusammengefasst und zum Vergleich die Werte von Elvis et al. (1994)

(c) BSC-MED der AGN mit $M_B \leq -23$, Infrarot und optischer Bereich

(d) BSC-MED der AGN mit $M_B > -23$, Infrarot und optischer Bereich

Abbildung 6.4: Die mittlere spekrale Energieverteilung aller BSC-AGN-Objekte (BSC-MED). Die MED von Elvis et al. (1994) und die 68% und 100% Percentile-Konturen sind in rot eingezeichnet (68% mit -.-, 100% mit -..-).

angegeben. Es zeichnet sich deutlich ab, dass die spektralen Leuchtkraftdatenpunkte der AGN mit $M_B \leq -23$ und $M_B > -23$ im infraroten und optischen Bereich mit den Elvisdaten, im Rahmen der 1 σ -Fehler, gut übereinstimmen. Es wurde aus dem Spektralindex α_{ox} geschlossen, dass die SED für $M_B \leq -23$ und $M_B > -23$ den gleichen spektralen Verlauf haben. In den Abbildungen 6.4(a) und 6.4(b) bestätigt sich diese Schlussfolgerung. Bei den Seyfert-Galaxien ($M_B > -23$) liegen der Optische und der Röntgendatenpunkt unterhalb der MED von Elvis et al. (1994). Es kann noch nicht von einer systematischen Abweichung gesprochen werden, da die Abweichung noch innerhalb des 1 σ -Fehlers der Leuchtkraftdatenpunkte ist.

Die Wahl der absoluten Helligkeit M_B hat somit keinen signifikaten Einfluss auf die BSC-MED von Quasaren und Seyfert-Galaxien. Für beide Gruppen ist eine Beschreibung der SED analog den Ergebnissen von Elvis et al. (1994) möglich. Die MED von Elvis et al. (1994) kann auch auf die leuchtkraftschwächeren Seyfert-Galaxien ausgedehnt werden. Es kann die allgemein akzeptierte Annahme erhärtet werden, dass für Quasare und Seyfert-Galaxien in dieser statistischen Betrachtung der selbe Energieerzeugungsmechanismus existiert, d.h. ein supermassives Schwarzes Loch im Zentrum des AGN Materie akkretiert und diese einfallende Materie zu Strahlung

(a) optische Leuchtkraft $\log(\nu L_{\nu~\rm B})$ und der Spektralindex $\alpha_{\rm ox}$

Abbildung 6.5: Es besteht nur eine marginale Korrelation zwischen den Spektralindizes α_{ox} , bzw. α_{ix} und der optischen Leuchtkraft $\log(\nu L_{\nu B})$. Die AGN mit $M_B \leq -23$ sind durch ein "+" gekennzeichnet.

angeregt wird. Diese Strahlung ruft in der Umgebung des AGN weitere Emission hervor.

6.2.2 Spektralindizes

In Abschnitt 5.2.5 sind die Spektralindizes $\alpha_{\rm ro}$, $\alpha_{\rm ox}$, $\alpha_{\rm rx}$, $\alpha_{\rm ix}$ und $\alpha_{\rm ri}$ gebildet worden und es wurde ein Vergleich mit den entsprechenden Spektralindizes von Elvis et al. (1994) vorgenommen. Es zeigten sich scheinbare Übereinstimmungen bei den Verteilungen der $\alpha_{\rm ro}$ und $\alpha_{\rm ix}$ mit der Lage des Referenzspektralindex von Elvis et al. (1994). Für die anderen Verteilungen liegt der Referenzspektralindex zwar an den Rändern, ist aber aufgrund der unterschiedlichen Daten und den vorgenommenen Umrechnungen nicht vergleichbar.

Die Leuchtkräfte im optischen und Röntgenbereich zeigten eine starke Korrelation (Abschnitt 5.2.3). Besitzt ein AGN in einem Frequenzbereich, zum Beispiel im Infraroten, eine hohe Leuchtkräft, so zeigt sich, dass dieser AGN auch in den anderen Frequenzbereichen hohe Leuchtkräfte besitzt. Diese Eigenschaft zeigt keinen signifikanten Einfluss auf den Spektralindex α_{ox} . Bei Bechtold et al. (1994), Wilkes et al. (1999), Stepanian et al. (2003) und Vignali et al. (2003) ergeben sich unterschiedliche Bilder über die Korrelationen des Spektralindexes α_{ox} mit der optischen Leuchtkraft $log(\nu L_{\nu B})$ oder der Röntgenleuchtkraft $log(\nu L_{\nu X})$. In Abbildung 6.5 sind die Spektralindizes α_{ox} und α_{ix} , jeweils gegen die optischen Leuchtkraft aufgetragen. Es wurde dabei wieder eine Unterteilung in der absoluten Helligkeit M_B vorgenommen ($M_B \leq -23$ und $M_B > -23$). Die AGN mit $M_B \leq -23$ sind durch ein "+" in der Abbildung 6.5 gekennzeichnet.

Es scheint in der Darstellung des Spektralindex α_{ix} gegen die optischen Leuchtkraft eine schwache Antikorrelation (Abb. 6.5(b)) vorzuliegen. Diese schwache Korrelation wird von Vignali et al. (2003) hingegen für den Spektralindex α_{ox} gefunden, wobei in ihrer Arbeit die Röngteneigenschaften von optisch selektierten ,radioleisen' AGN des "Sloan Digital Sky Survey - Early Data Release" (SDSS-EDR) (Stoughton et al. 2002) untersucht wurden. Gesicherte Kenntnisse über diese Antikorrelation gibt es

Band	Frequenz	norm	ierte Leuc	htkraft $\log \nu L_{\nu}$	
	$\log \nu$	$R \ge 10$	Elvis	R < 10	Elvis
$1.4~\mathrm{GHz}$	9.15	-4.90 ± 0.48	≈ -5.2	-2.24 ± 0.89	≈ -2.5
$K_{\rm s}$	14.14	0.17 ± 0.17	0.29	0.10 ± 0.10	0.12
H	14.26	0.13 ± 0.12	0.11	0.06 ± 0.07	0.06
J	14.38	0	0	0	0
V	14.74	0.12 ± 0.32	0.20	0.39 ± 0.26	0.26
B	14.83	0.25 ± 0.29	0.30	0.50 ± 0.25	0.35
2 keV	17.68	-0.80 ± 0.57	-0.42	-0.26 ± 0.62	-0.21

Tabelle 6.2: Statistik der normierten BSC-AGN-Datenpunkte der N = 31 AGN mit $R \geq 10$ und N = 94 AGN mit $R \leq 10$ in der SED von Abbildung 6.6. Die normierte Leuchtkraft $\log \nu L_{\nu}$ besitzt nur eine relative Einheit. Die Spalte "Elvis" enthält die normierte Leuchtkraft der "radiolauten' und "radioleisen' MED von Elvis et al. (1994).

bisher jedoch nicht. Für den BSC-AGN-Datensatz gibt es keine signifikanten Korrelation des Spektralindex α_{ox} mit der optischen Leuchtkraft log νL_{ν} . Die Wahl der absoluten Helligkeit M_B als photometrische Unterscheidung zwischen Quasaren und Seyfert-Galaxien bringt keine Verbesserung der Korrelation. Die Rotverschiebung der AGN nimmt zwar mit steigender optischer Leuchtkraft zu, jedoch hat sie keinen Einfluss auf die Verteilung. Vignali et al. (2003) schlossen aus der rotverschiebungsunabhängigen schwachen Antikorrelation, dass die Mechanismen für die Erzeugung der Energien in einem breiten Frequenzbereich (d.h. Akkretion eines Schwarzes Loch) in lokalen Universum und zu früheren kosmischen Epochen ähnlich sind.

Für die schwache Antikorrelation des Spektralindex α_{ix} gegen die optischen Leuchtkraft gibt es bisher keine vergleichbaren Arbeiten.

Bei den übrigen Spektralindizes $\alpha_{\rm ro}$, $\alpha_{\rm rx}$ und $\alpha_{\rm ri}$ wurden keine weiteren Korrelationen gefunden. Eine Berücksichtigung der Radiolautstärke R der BSC-AGN-Objekte führt ebenfalls zu keinen weiteren Korrelationen zwischen den unterschiedlichen Spektralindizes. Ergebnisse von Zhou & Wang (2002) über einen Zusammenhang des Spektralindex $\alpha_{\rm ox}$ mit dem Photonindex Γ können nicht bestätigt werden.

6.2.3 Einfluss der Radiolautstärke

Eine Unterteilung der AGN bezüglich der Radiolautstärke R (Kellermann et al. 1989) wurde schon bei der Bestimmung der Eigenschaften der BSC-AGN-Objekte vorgenommen. Die Trennung von "radiolauten" und "radioleisen" AGN ist für die Untersuchung der SED von Interesse, das sich für die AGN die Flüsse im Radiobereich um mehrere Zehnerpotenzen unterscheiden können. Bei der Unterteilung des BSC-AGN-Datensatzes in der Radiolautstärke $R = F_{5 \text{ GHz}} / F_B$ erhält man N = 31 AGN mit einem $R \geq 10$, die "radiolauten" AGN, und N = 94 AGN mit R < 10, die "radioleisen" AGN. Die restlichen N = 128 AGN mit einer oberen Grenze in Radiofluss werden nicht weiter berücksichtigt. Die Tabelle 6.2 enthält die Informationen der Leuchtkraftdatenpunkte der BSC-MED aus Abbilung 6.6.

Die beiden spektralen Energieverteilungen der "radiolauten" und "radioleisen" AGN des BSC-AGN-Datensatzes bestätigen die von Elvis et al. (1994) bestimmte MED

(a) BSC-MED der AGN mit einer RadiolautstärkeR<10

(b) BSC-MED der AGN mit einer Radiolautstärke $R \geq 10$

(c) BSC-MED der AGN mit einer RadiolautstärkeR<10

(d) BSC-MED der AGN mit einer Radiolautstärke $R \geq 10$

Abbildung 6.6: Es ist hier die mittlere spekrale Energieverteilung (BSC-MED) aller BSC-AGN-Objekte mit R < 10 und $R \ge 10$ dargestellt. In den beiden Abbildungen wurde jeweils die ,radiolaute', bzw. ,radioleise' MED (rote Linie) von Elvis et al. (1994) verwendet.

für ,radiolaute' und ,radioleise' AGN. Bei der ,radioleisen' MED des BSC-AGN-Datensatzes entspricht der Leuchtkraftdatenpunkt im Röntgenbereich noch innerhalb der 1σ -Fehlergrenze dem Verlauf der "radioleisen" BSC-MED von Elvis et al. (1994). Die Leuchtkraftdatenpunkte der "radiolauten" BSC-MED im optischen Bereich liegen höher, als die Leuchtkraftdatenpunkte in der "radioleisen" BSC-MED. Ho & Peng (2001) zeigen eine direkte Korrelation der Radiolautstärke R und der optischen Leuchtkraft des Kerns eines nahen AGN. Die Informationen über die Kernleuchtkraft stehen für diese Arbeit zwar nicht zur Verfügung, die hohen Leuchtkraftdatenpunkte der "radiolauten' BSC-MED können auf diese Korrelation hindeuten, sind jedoch nicht signifikant genug. Bei ausreichend hoher Rotverschiebung kann die Gesamtleuchtkraft des AGN der Kernleuchtkraft entsprechen. Unter der Annahme, dass die gefundene Korrelation der Radiolautstärke R und der optischen Leuchtkraft des Kerns eines nahen AGN von Ho & Peng (2001) auch für höher rotverschobene AGN gilt, könnte die Lage der Leuchtkraftdatenpunkte im optischen Bereich der "radiolauten' BSC-MED damit erklärt. Es ist jedoch anzunehmen, dass die Korrelation bei hohen Rotveschiebungen nicht mehr sicher bestimmt ist.

Es ist in der ,radiolauten' MED von Elvis et al. (1994) eine Zunahme der Emission im Röntgenbereich, gegenüber den ,radioleisen' MED zu sehen. Die ,radiolauten' AGN emitteren also mehr Energie in Röntgenbereich, als dies bei den ,radioleisen' AGN der Fall ist (Brinkmann et al. 1997). Dieser Unterschied wird durch den ,radiolauten' Röntgendatenpunkt des BSC-AGN-Datensatzes in der BSC-MED weiter erhärtet. In den Arbeiten von Stepanian et al. (2003) und Zhou & Wang (2002) liegen die ,radiolauten' spektralen Energieverteilungen ebenfalls bei höheren Leuchtkräften.

Der Vergleich der "radiolauten' und "radioleisen' BSC-MED mit den entsprechenden MED von Elvis et al. (1994) zeigte keine signifikanten Abweichungen, und bestätigt somit die bisher erhalten Ergebnisse über den mittleren Verlauf der "radiolauten' und "radioleisen' SED für AGN.

7. Ergebnisse

Für die vorliegende Arbeit wurde ein neuer Datensatz von röntgenselektierten Quasaren und Seyfert-Galaxien verwendet. Dieser Datensatz basiert auf dem "Hamburg/RASS Catalogue of optical Identifications" (HRC) von (Zickgraf et al. 2003). Der BSC-AGN-Datensatz stellt eine Sammlung von optisch hellen AGN bis zu einer scheinbaren Helligkeit von B = 16.5 aus dem HRC dar. Es werden N = 253 Quasare und Seyfert-Galaxien auf ihre mittleren spektralen Eigenschaften untersucht.

Für diesen BSC-AGN-Datensatz wurde in verschiedenen Frequenzbereichen nach verfügbaren Informationen über Helligkeiten oder Flüsse der einzelnen AGN gesucht. Diese Informationen mussten für eine weitere Verwendung aufbereitet werden, um die Konstruktion einer spektralen Energieverteilung – SED zu ermöglichen. Zur Sicherstellung einer möglichst homogenen Datenlage wurden nur dafür geeignete Informationsquellen verwendet. Der NVSS (Condon et al. 1998), der 2MASS (Skrutskie et al. 2000) und der HRC erfüllen diese Anforderung. Desweiteren wurden Spektralindizes aus den Flüssen unterschiedlicher Frequenzbereiche gebildet und analysiert.

Mit N = 253 AGN verfügt der BSC-AGN-Datensatz über eine große homogene Datensammlung, mit einer erheblich verbesserten statistischen Aussagekraft gegenüber bisherigen Arbeiten.

Mit den N = 253 AGN des BSC-AGN-Datensatzes wird eine mittlere spektrale Energieverteilung (BSC-MED) gebildet und mit der MED in der Arbeit von Elvis et al. (1994) verglichen. Die Ergebnisse von Elvis et al. (1994) werden im Rahmen der 1 σ -Fehlergrenzen der Leuchtkraftdatenpunte der BSC-MED bestätigt.

Für die BSC-AGN-Objekte wurde die BSC-MED auch unter den Aspekten der absoluten Helligkeit M_B und der Radiolautstärke R untersucht. Die Wahl einer absoluten Helligkeit M_B hat keinen signifikaten Einfluss auf die Form der spektralen Energieverteilung. Aufgrund der direkten Korrelationen zwischen den Leuchtkräften im Infraroten und Optischen mit der Röntgenleuchtkraft, lässt sich die MED von Quasaren von Elvis et al. (1994) auch auf die leuchtkraftschwächeren Seyfert-Galaxien ($M_B > -23$) ausdehnen. Die allgemein angenommene Tatsache, dass Seyfert-Galaxien nur leuchtkraftschwächere Quasare sind, kann mit den vorliegenden Ergebnissen weiter erhärtet werden. Die Leuchtkräfte im Radiobereich besitzen im Rahmen des BSC-AGN-Datensatzes keine erkennbare signifikante Korrelation mit den Leuchtkräften in den anderen Frequenzbereichen. Ein Untersuchung der spektralen Energieverteilung unter diesem Aspekt bestätigt bisher gewonnene Erkenntnisse in der Arbeit von Elvis et al. (1994).

Es gibt keine signifikante Korrelation zwischen dem Spektralindex α_{ox} und der optischen Leuchtkraft. Die Wahl des Spektralindex α_{ox} ist historisch bedingt, und könnte auch durch die Wahl vom Spektralindex α_{ix} ersetzt werden.

A. Tabellen des BSC-AGN-Datensatzes

A.1 Aufstellung des BSC-AGN-Datensatzes

Die Entstehung des BSC-AGN-Datensatzes ist in Kapitel 4 ausführlich dargestellt. Hier sind nun die entsprechen den Tabellen enthalten. Aufgrund der unübersichtliche Größe der Tabellen werden Tabellenstruktur und Fußnoten vorweg beschrieben. Die Tabellenstruktur ist in Tabelle A.1 aufgeführt. Die Fußnoten bedeuten folgendes:

1) nicht im Véron-Katalog enthalten, da erst 2002 entdeckt

2) gegen als AGN in Brinkmann et al. (2000), A&A 356, 445 aber kein Spektrum abgebildet

- 3) INAOE: AGN (Letter Chavushyan 30 Aug.2002), verbessertes Spektrum
- 4) INAOE: CV, Doppelgalaxie?
- 5) Teil der Galaxie NGC 4401, wahrscheinlich kein AGN, vermutlich HII Region
- 6) VII Zw751,Galaxienpaar, z=0.080135, Spektrum vom CfA Redshift Survey, keine Abbilldungen, vermutlich kein AGN

7) INAOE: AGN; in Stepanian et al. (2003)

8) INAOE: wahrscheinlich BL Lac, verbessertes Spektrum

9) RASS-ID Fehler: Der QSO ist bei $\alpha = 095823.5 \delta = +065507 (V=17.3)24''$ entfernt von Röntgenposition. Vermutlich wurde nicht des richtige optische Gegenstück ausgewählt. B = 17.7: zu schwach für den BSC-AGN-Datensatz.

10) Begleitgalaxie liegt ein paar Bogensekunden süd-west. Das helle Objekt östlich ist ein Stern.

11) Galaxie
npaar: die östliche Galaxie ist vermutlich der AGN. Die Westliche ha
t $B\approx 17.5.$

12) Kalibrationsfehler des HQS. Neue Kallibration ergib
t $B\approx 17.2,$ somit zu schwach für den BSC-AGN-Datensatz.

13) Überlappende Objektivprismenspektren: Spektren von beiden Objekten enthalten, die Klassifiaktion als AGN zweifelhaft.

14) BSC 2297 nicht weiter betrachtet, Gravitationslinsenquasar

15) BSC2114 und BSC2156 nach Korrektur der B-Helligkeit.

Notizen zu einzelnen Galaxien: BSC2045 neue Koordinaten aus dem DSS-fits-Bild bestimmt BSC2047 neue Koordinaten aus dem DSS-fits-Bild bestimmt BSC2052 neue Koordinaten aus dem DSS-fits-Bild bestimmt BSC2059 neue Koordinaten aus dem DSS-fits-Bild bestimmt BSC2110 korrigierte Koordinaten, dem NED entnommen BSC2136 IC1166, Galaxienpaar, neue Koordinanten von IC1166 NED01, klassifiziert als Seyfert-1-Galaxie BSC2185 Galaxienpaar, südwestliches Objekt ist AGN, korrigierte Koordinaten BSC2197 PG 1115+407, neue Koordinaten, das blaue Objekt ausgewählt BSC2219 neue Koordinaten aus dem DSS-fits-Bild bestimmt BSC2226 korrigierte Koordinaten, aus dem DSS-fits-Bild bestimmt BSC2253 neue Koordinaten, nordwestliche Objekt ausgewählt BSC2297 entfernt, vermutlich ein Gravitationslinsenquasar BSC3230 NGC 5204 : SA(s)m HII (NED) BSC3231 MESSIER 82: I0;Sbrst HII (NED) BSC3232 NGC 4449: IBm HII (NED) BSC3233 NGC 4190: Im pec (NED) BSC3234 MESSIER 063: SA(rs)bc HII/LINER (NED) BSC3235 MESSIER 049 : E2/S0(2); früher Hubbletyp, NED gibt auch Seyfert-2-Galaxie Klassifikation an (Woher?) BSC3236 NGC 3252: SBd? sp (NED) BSC3237 NGC 5982: E3 (NED) BSC3238 NGC 1550: SA(s)0-: früher Hubbletyp, Galaxie (NED) BSC3239 NGC 2650: SB(rs)b: (NED) BSC3240 UGC 12655: S0 (NED) Rotverschiebung aus CfA Redshift Survey BSC3241 NGC 0057: E (NED) BSC3242 NGC 0741: E0 (NED) BSC3243 MRK 0202: kompakt Compact (NED); Mazzarella/Balzano Katalog gibt Referenz fuer Spektren BSC3244 NGC 5129: E (NED) BSC3245 NGC 2832: E+2:;cD Galaxie (NED) BSC3246 NGC 6338: cD;S0 Galaxie (NED) BSC3247 CGCG 047-107: Sc-Galaxie (NED) BSC3248 NGC 6137 : Radiogalaxie in einem arme Cluster, kein Spektrum angegeben, aber als emissionslinenlos beschrieben BSC3249 NGC 6051 cD; E früher Hubbletyp Galaxie BSC3250 CGCG 160-193: Quelle für die AGN Klassifikation in NED nicht nachvollziehbar

BSC3260 Spektrum von Laurent & Muehleisen: BL LAC ? ApJS 118:127,175, 1998 BSC3261 IC 0712 : früher Hubbletyp Galaxie

BSC3262 NGC 6269 cD;E Galaxie BSC3263 Klassifikation unklar, kein Spektrum, Rotverschiebung stammt auch aus dem CfA Redshift Survey

BSC3264 CD Galaxie in einem Cluster

BSC3265 CGCG 375-033: Rotverschiebung stammt aus dem CfA Redshift Survey, kein Spektrum, 1999ApJS..121..287H

BSC3266 Rotverschiebung aus einer Arbeit über Radio-Galaxien in Abell-Clustern BSC3267 NGC 5778: Klassifikation "D" in NED, Rotverschiebungs-Quelle Studie nach Früher Hubbletyp-Galaxien: 1999MNRAS.305..259 BSC3268 UGC 02450: CD-Galaxie in Abell Haufen BSC3269 Vermutlich CD-Galaxie. Kein Spektrum erhältlich, Rotverschiebung aus 1990MNRAS.243..390K, 6m-SAO Beobachtungen BSC3270 UGC 09480 vermutlich CD-Galaxie,1999MNRAS.306..857C

Tabelle A.1: Erläuterungen der Tabellenspalten des BSC-AGN-Datensatzes.

Spalte	Bedeutung
BSC	für die Arbeit verwendete Katalognummer des AGN
RXJ-Name	Name des AGN, entnommen aus dem HRC
Objekt-Name	gebräuchlicher Name in anderen Katalogen
lpha	Rektaszension (Equinox 2000)
δ	Deklination (Equinox 2000)
ClsNed	Klassifikation des AGN bei NED
ClsVer	Klassifikation des AGN im Véron-Katalog
F	"u" B-Helligkeit Mag1 ist aus USNO-Katalog,
	naher heller Stern stört Bestimmung der HQS-B-Helligkeit
	"p" B-Helligkeit Mag1 ist aus USNO-Katalog,
	heller Stern stört Bestimmung der HQS-B-Helligkeit,
	Such radius beim USNO größer als $5''$ und kleiner als 10''
Mag1	B-Helligkeit aus dem HRC
F	"+" NED-B-Helligkeit stimmt eher mit Véron-Helligkeit überein
	"-" HQS-B-Helligkeit stimmt eher mit Véron-Helligkeit überein
	NED-Helligkeit entfernt
	"x" keine Véron-Helligkeit verfügbar
	"v" Objekt als optisch variabel in NED markiert
Mag2	B-Helligkeit gegeben bei NED
MagF	ausgewählte B -Helligkeit für die Analyse
M_{err}	Fehler zu ausgewählten Helligkeit
zNED	Rotverschiebung gegeben bei NED
zVer	Rotverschiebung gegeben beim Véron-Katalog
mVer	Helligkeit des AGN im Véron-Katalog
col1	B - V-Farbindex des AGN im Véron-Katalog
col2	U - B-Farbindex des AGN im Véron-Katalog
$M_{\rm B}Ver$	absolute Helligkeit, aus Véron-Katalog
Ltype	Klassifikationstyp des BSC-Objekts
	NO - keine Rotverschiebung bekannt
	AG - AGN, wird für die SED verwendet
	GA - nahe Galaxie
	BL - BL Lac
	CV - kataklysmisch Veränderlicher

BSC	RXJ-Name	Objekt-Name	α	δ	ClsNED	ClsVer	F	Mag1	Mag2	zNED	zVer	Ltype
BSC1001	J001052.2+290935	RX J0010.8+2909	$00 \ 10 \ 53.3$	$+29 \ 09 \ 33$				16.0	16.0			NO
BSC1002	J011234.9+104236	NPM1G +10.0048	$01 \ 12 \ 35.0$	$+10 \ 42 \ 35$				16.1	16.09			NO
BSC1003	J012648.9+032709	RX J0126.8+0327	$01 \ 26 \ 48.2$	$+03 \ 27 \ 07$				16.5	16.5			NO
BSC1004	J075941.0 + 540021		07 59 40.5	$+54 \ 00 \ 20$				16.1	16.18			NO
BSC1005	J092108.2 + 480201	RX J0921.1+4802	$09 \ 21 \ 5.3$	$+48 \ 02 \ 08$		SBN	u	16.1	13.84		0.080	GA 3)
BSC1006	J093641.0+101413	RX J0936.6+1014	$09 \ 36 \ 40.9$	+10 14 15	AGN			16.4	16.4			NO
BSC1008	J095948.0+112926	CGCG 064-024	09 59 46.8	+11 29 19			u	15.0	15.7			NO
BSC1009	J101202.4+301309	RX J1012.0+3013	$10 \ 12 \ 2.6$	$+30 \ 13 \ 02$	AGN		u	15.5				NO
BSC1010	J105006.9 + 113231	LEDA 083360	10 50 7.7	$+11 \ 32 \ 27$				16.0	16.0			NO
BSC1011	J105328.5 + 053052	RX J1053.4+0530	10 53 28.4	+05 30 32				16.2	16.2			NO 10)
BSC1012	J110109.0 + 154420	RX J1101.1+1544	11 01 8.7	+15 44 07			u	16.0	17.87			NO 11)
BSC1013	J110716.7 + 080444	VIII Zw 125	$11 \ 07 \ 17.6$	+08 04 36			u	15.3	17.01			NO
BSC1014	J112150.8 + 405147	RX J1121.8+4051	$11 \ 21 \ 51.1$	$+40\ 51\ 47$	AGN		u	14.3	15.63			NO
BSC1016	J114443.3+393637	NPM1G +39.0269	$11 \ 44 \ 43.2$	+39 36 36			u	15.1	16.74			NO
BSC1017	J114902.6 + 182104		$11 \ 49 \ 3.5$	+18 21 02				16.5				NO
BSC1019	J122057.8 + 813558	NPM1G + 81.0050	$12 \ 20 \ 58.2$	+81 36 00			u	14.6	16.09			NO
BSC1020	J122600.6 + 333129	RX J1226.0+3331	$12 \ 25 \ 58.0$	+33 31 33			D	10.7				NO 5)
BSC1021	J130456.7 + 395537	IC 4165	$13 \ 04 \ 56.8$	$+39\ 55\ 29$			ů	13.2	15.78			NO
BSC1022	J132845.7+192038	RX J1328.7+1920	$13 \ 28 \ 44.3$	+19 20 54			u	15.3	17.44			NO
BSC1023	J133608.2 + 755041		13 36 9.8	$+75\ 50\ 32$				15.6	15.20			NO
BSC1024	J135536.3 + 155755	RX J1355.6+1557	13 55 35.4	+15 57 49			u	16.4	15.6			NO
BSC1025	$J141441.9 \pm 165812$	BX J1414.6+1658	14 14 42.0	+165805				16.2	16.2			NO
BSC1026	J143127.9+275129	2MASXi J14312	$14 \ 31 \ 28.1$	$+27\ 51\ 21$	AGN			16.5	16.5	0.070		NO 2)
BSC1027	$J145427.2 \pm 181924$		14 54 26.8	+18 19 40			11	16.5	17.05			NO
BSC1028	$J145448.9 \pm 111430$		14 54 50.1	+11 14 33				15.9				NO
BSC1029	$J151142.4 \pm 210108$	BX J1511.7+2101	15 11 43.4	+21 01 01			11	15.1	17.34			NO
BSC1030	J151304.2 + 304205	RX J1513.0+3042	15 13 4.5	+30 42 00				16.5	16.5			NO
BSC1031	$J152255.8 \pm 660445$		15 22 56.8	+66 04 41				16.4				BL 8)
BSC1032	$J154430 3 \pm 282754$	BX J1544 5+2827	15 44 30 4	$+28\ 27\ 57$				16.5	16.5			NO
BSC1033	$J154514.1 \pm 784434$		15 45 13.6	+78 44 38				16.4				NO
BSC1034	J155417.9 + 323848	CG 1329	15 54 17.3	+32 38 39	AGN			16.1	17			NO
BSC1035	$1155837 8 \pm 282814$	BX J1558 6+2828	15 58 37 8	+28 28 38				16.3	16.3			NO
BSC1036	J161151 0 + 694420	1011 0100010 2020	16 11 50 4	+69 44 15				16.5	1010			NO
BSC1037	J1617245+085408		16 17 23 6	+085412				16.2				NO
BSC1038	$1163332 0 \pm 245903$	BX 11633 5±2459	16 33 31 9	+2459.09				16.0	16.0			NO 13)
BSC1039	J163421 2+570933	101 01000.0 2400	16 34 22 8	+57 09 56				15.2	10.0			NO 10)
BSC1040	1164821.2 + 010303	IBAS E16460 ± 1502	16 48 21 7	$\pm 14 57 14$	AGN		11	14.9				NO
BSC1040	J1659477 + 163012	11010 1 10400+1002	16 59 47 5	+16 30 23	11011		u	16.2				NO
BSC1042	$1174208 8 \pm 510103$		17 42 9 2	$\pm 51 \ 01 \ 03$				16.4				NO
BSC1042 BSC1043	$1175441 \ 9\pm 680334$	VII Zw 751	17 54 39 1	+68 03 28				16.3	174			GA 6)
D901049	0110441.97000334	VII ZW 101	11 04 09.1	T00 03 20				10.5	11.4			GAU

Tabelle A.2: Der Teil des BSC-AGN-Datensatz mit Objekten ohne Rotverschiebung

BSC	RXJ-Name	Objekt-Name	α	δ	ClsNed	ClsVer	F	Mag1	F	Mag2	MagF	Merr	zNED	zVer	mVer	col1	col2	M_BVer	Ltype
BSC2044	J124252.5 + 131530	NGC 4639	$12 \ 42 \ 52.3$	$+13 \ 15 \ 25$	Sy1.8	S1.0		15.9	+	12.24	12.14	0.029		0.001	13.62	0.90	0.36	-15.3	AG
BSC2045	J121900.4 + 471747	NGC 4258	$12 \ 18 \ 58.1$	+47 18 17	Sv1.9	S2		0.0	x	9.10	9.20	0.006		0.002	12.42	0.77	0.30	-18.0	AG
BSC2046	J120308.9 + 443155	NGC 4051	$12 \ 03 \ 9.6$	+44 31 52	Sv1.5	S1n	u	13.3	-		11.18	0.035		0.002	13.59	0.67	-0.12	-16.8	AG
BSC2047	J131327 2 + 363542	NGC 5033	13 13 27 9	+36,35,38	Sv1 9	S1 9		12.8	_		10.61	0.008		0.003	12.96	0.93	0.37	-18.3	AG
BSC2048	11210313 ± 392450	NGC 4151	12 10 32 5	$\pm 39 24 19$	Sv1.5	S1 5	11	13.2	_		11.28	0.019		0.003	12.56	0.71	-0.26	-18 7	AG
BSC2040	11023315 ± 195143	NGC 3227	10 23 30 6	+195153	Sv1.5	S1.5	u	15.5	+	11.1	11.20	0.021		0.003	12.00	0.82	0.20	-18.7	AG
DSC2040	1110642 5 792407	NCC 2516	11 06 47 7	172 24 07	Sv1 5	S1.5		19.4		12.5	12.40	0.012		0.000	12.01	0.72	0.23	20.5	AC
DSC2050	11140140 + 944150	NGC 2708	11 40 14 0	+12.34.07 +24.41.47	Sy1.5	S1.5 S1		16.5		12.0	12.49	0.013		0.009	12.12	0.72	-0.23	-20.5	AG
DSC2051	1101007.0+004052	MADIZ 700	10 10 00 0	+24 41 47	G 1 F	01 5		10.5	-	13.10	13.1	0.2		0.012	14.94	0 77	0.00	-21.2	AG
BSC2052	J121827.0+294853	MARK 766	12 18 20.0	+29 48 47	Sy1.5	51.5		16.0	+	13.70	14.0	0.20		0.012	14.34	0.77	0.00	-20.0	AG
BSC2053	J005953.3 + 314934	MARK 352	00 59 53.3	+31 49 36	Sy1.0	S1.0		15.8	+	14.8	14.80	0.50		0.015	15.25	0.44	-0.66	-19.5	AG
BSC2054	$J232846.9 \pm 033042$	NGC 7679	23 28 46.7	$+03 \ 30 \ 40$	Sy2	S2		14.0		13.47	13.69	0.042		0.016	13.50			-21.4	AG
BSC2055	$J_{230315.7+085226}$	NGC 7469	$23 \ 03 \ 15.6$	+08 52 25	Sy1.2	S1.5		14.0	+	13.0	12.84	0.012	0.0163	0.017	13.42	0.38	-0.72	-21.6	AG
BSC2056	J141759.6 + 250817	NGC 5548	$14 \ 17 \ 59.3$	$+25 \ 08 \ 09$	Sy1.5	S1.5		14.7	-		13.10	0.014		0.017	14.35	0.62	-0.46	-20.7	AG
BSC2057	J014358.4 + 022057	MARK 573	$01 \ 43 \ 57.7$	+02 20 58	Sy2	S2		15.8	-		13.7	0.2		0.017	14.90	0.83	0.03	-20.1	AG
BSC2058	J012732.9+191043	MARK 359	$01 \ 27 \ 32.4$	+19 10 43	Sy1.5	S1n		15.5	-		14.26	0.013		0.017	14.89	0.67	-0.21	-20.2	AG
BSC2059	J123741.4 + 264229	IC 3599	$12 \ 37 \ 41.3$	+26 42 27	NLSy1	S1n		16.1		15.6	15.6	0.3		0.021	15.60			-19.9	AG
BSC2060	J122324.4 + 024040	MARK 50	$12 \ 23 \ 24.1$	+02 40 41	Sy1	S1.2		16.3	-		16.3	0.3		0.023	15.70	0.53	-0.57	-20.0	AG
BSC2061	J163230.3+823214	NGC 6251	$16 \ 32 \ 32.2$	+82 32 14	Sy2	S2		15.7	+	13.64	13.6	0.2		0.024	14.00			-21.8	AG
BSC2062	J000618.9 + 201215	MARK 335	$00 \ 06 \ 19.5$	$+20 \ 12 \ 07$	Sv1.2	S1.2		13.4		13.75	13.6	0.2		0.025	14.19	0.34	-0.75	-21.7	AG
BSC2063	J000226.6+032105	MARK 543	$00 \ 02 \ 26.4$	+03 21 06	Sv1.0	S1.5		16.5	+	15.06	14.8	0.1		0.026	15.33	0.65	-0.09	-20.6	AG
BSC2064	J135420.2 + 325547	MARK 663	13 54 19.9	+325547	Sv1	S1		16.4	+	14.62	14.6	0.2		0.026	15.40			-20.6	AG
BSC2065	$J175548 3 \pm 623641$	NGC 6521	17 55 48 4	+62.36.43	Sv1 9	S1 9	11	14.6		13 95	12.81	0.036		0.027	13 90			-22.2	AG
BSC2066	$J_{220417}^{-}7+043957$	PKS 2201+04	22 04 17 6	+04 40 01	Sv1	S1	u	15.2		15.2	15.2	0.3		0.028	16.20	1.00	0.22	-19.9	AG
BSC2067	$1092603 6 \pm 124406$	MARK 705	00 26 3 2	$\pm 12 44 03$	Sy1	S1 2		15.1		1/ 88	14.8	0.1		0.028	15.15	0.55	0.55	21.0	AG
DSC2001	1162012 1 400858	KUC 1618 402	16 20 12 6	140.00.05	Sy1	S1.2 S1		16.5		16	16	0.1	0.028	0.020	15.10	0.00	-0.00	20.7	AC
DSC2008	122013.1 ± 400858 1222245.4 ± 115012	MCC 02 57 002	22 22 45 0	+40.09.03 +11.50.08	Sv1 5	S1 5		16.5		15 7	16	0.5	0.028	0.028	15.40			-20.7	AG
DSC2009	1001006 0 + 1610012	MARK 704	22 23 45.0	+16 10 10	Sy1.5	51.5		10.5	Ŧ	15.7	15 1	0.3		0.029	14.89	0.60	0.19	-20.5	AG
DSC2070	1091820.2 ± 101823	MARK 704	09 18 25.9	+10 10 10 10	Sy1.5	51.2		15.1		10.00	10.1	0.3		0.029	14.82	0.62	-0.12	-21.4	AG
BSC2071	$J_{231856.8+001436}$	NGC 7603	23 18 50.7	+00 14 37	Sy1.5	51.5		15.2	+	14.04	14.4	0.1		0.029	14.73	0.72	-0.21	-21.5	AG
BSC2072	J074729.4 + 605601	MARK 10	07 47 28.8	$+60\ 56\ 03$	Sy1.2	S1.0	u	11.1	+	13.34	14.03	0.067		0.030	15.18	0.47	-0.70	-21.1	AG
BSC2073	J153552.0+575404	MARK 290	15 35 52.3	+575409	Sy1.5	S1.5		15.3		15.21	15.3	0.3		0.030	15.56	0.60	-0.62	-20.7	AG
BSC2074	J155703.2 + 635029	KAZ 49	15 57 3.3	+63 50 27	Sy1.9	S1		16.1	+	15.3	15.3	0.3		0.030	15.30			-21.0	AG
BSC2075	J130358.7 + 534745	SBS 1301 + 540	$13 \ 03 \ 59.5$	+53 47 28		S1		16.5		17	16.5	0.3		0.031					AG 7)
BSC2076	J135304.8 + 691832	MARK 279	13 53 3.7	$+69\ 18\ 30$	Sy1.5	S1.0		15.3	+	14.57	14.04	0.131		0.031	15.15	0.69	-0.45	-21.2	AG
BSC2077	J024920.8+191813	MARK 372	$02 \ 49 \ 20.5$	$+19 \ 18 \ 12$	Sy1.5	S1.5		15.8	+	14.9	15.3	0.2		0.031	15.86	1.05	-0.03	-20.5	AG
BSC2078	J155909.5 + 350144	MARK 493	15 59 9.6	$+35 \ 01 \ 46$	Sy1	S1n	u	12.7	+	14.60	14.6	0.3		0.031	15.69	0.63	-0.48	-20.7	AG
BSC2079	J161124.8 + 585106	SBS 1610+589	$16 \ 11 \ 24.6$	+58 51 01	Sy1.5	S1.5		16.0		15.82	16.0	0.3		0.032	15.80			-20.6	AG
BSC2080	J143622.2 + 584750	MARK 817	$14 \ 36 \ 22.2$	+58 47 38	Sy1.5	S1.5		15.1		14.50	14.5	0.2		0.033	14.19	0.40	-0.79	-22.3	AG
BSC2081	J092343.0 + 225437	MCG 04.22.042	$09 \ 23 \ 43.1$	+225429	Sy1.2	S1.2		14.8	-	15.5	14.5	0.5		0.033	14.80			-21.7	AG
BSC2082	J113913.6 + 335552	MCG 06.26.012	$11 \ 39 \ 13.9$	+335549	Sv1.5	S1n		16.5	+	15.33	15.3	0.2		0.033	15.40			-21.1	AG
BSC2083	$J134952.7 \pm 020446$	UM 614	13 49 52.8	$+02\ 04\ 43$	Sv1.8	S1.8		16.2	x	15.03	15.0	0.3		0.033	17.03	0.89		-19.5	AG
BSC2084	J225932.9 + 245505	KAZ 320	22 59 32.9	+245506	NLSv1	S1n		15.7		15.88	15.73	0.010	0.03450	0.034	16.80			-19.8	AG
BSC2085	$J030007 6 \pm 163023$	BXS $J03000 \pm 1630$	03 00 8 0	+16 30 13	Sv1	S1		16.5		16.5	16.5	0.3	0.03500	0.035	16 40			-20.2	AG
BSC2086	J1414175 + 264441	MARK 670	$14 \ 14 \ 15 \ 1$	+26 44 51	Sv2	S2		15.8		15.5	15.5	0.3	0.03520	0.035	15 45	0.77	0.16	-21.2	AG
BSC2087	$1005055 4 \pm 130246$	NGC 3080	00 50 55 0	$\pm 13 02 37$	Sy1	S1 0	,,	12.8	+	14 32	14.32	0.18	0.03543	0.035	15.68	0.67	0.36	20.0	AG
DSC2001	1002512.2 ± 521716	MARK 110	09 05 00.9	+130237 +521710	Sy1	S1.0	u	14.0	- T	16.0	16.1	0.10	0.03543	0.035	16.12	0.07	-0.50	-20.5	AG
DSC2088	11101014 + 110946	MADE 799	11 01 1 7	+11.02.47	Sy1 5-10	51.5		14.4	Ŧ	14.0	14.0	0.1	0.03529	0.030	16.15	0.70	-0.07	-20.0	AG
BSC2089	1005124 0 + 000400	MARK 728	11 01 1.7	+11 02 47	Sy1.9	51.9		10.1	+	14.9	14.9	0.0	0.03505	0.030	10.75	0.97	0.20	-19.9	AG
BSC2090	$J005134.8 \pm 292408$	UGC 524	00 51 35.0	+29 24 02	Sy1.0	51.0		16.5	+	14.40	14.40	0.18	0.03596	0.036	14.50	0.00	0.00	-22.2	AG
BSC2091	$J_{10}J_{40}I_{5}+102620$	MARK 841	15 04 1.2	+10.26.15	Sy1.5	51.5		14.4		14.0	14.0	0.3	0.03620	0.036	14.50	0.23	-0.92	-22.2	AG
BSC2092	J161745.7+060343	2E 1615+0611	16 17 45.5	$+06\ 03\ 53$	Syl	51.5		16.1		16.55	16.1	0.3	0.03800	0.038	16.55	0.89	-0.30	-20.3	AG
BSC2093	J083949.7 + 484701	NPM1G+48.0114	08 39 49.6	+48 46 59	NLSy1	Sln		16.5		16.16	16.3	0.3	0.039	0.039	16.80			-20.1	AG
BSC2094	$J_{230402.8+223725}$	MARK 315	$23 \ 04 \ 2.6$	$+22 \ 37 \ 25$	Sy1.5	S1.5		15.7	-		14.77	0.058	0.03887	0.040	15.60	0.82	-0.09	-21.3	\mathbf{AG}
BSC2095	J234106.5 + 093805	NPM1G+09.0618	$23 \ 41 \ 6.5$	$+09 \ 38 \ 07$	Sy1	S1		15.9		16.18	15.9	0.3	0.04100	0.041	16.50			-20.5	\mathbf{AG}
BSC2096	J101912.1 + 635802	MARK 141	$10 \ 19 \ 12.5$	+63 58 02	Sy1.5	S1.2		15.8		15.42	15.35	0.055	0.04167	0.042	15.69	0.60	-0.45	-21.3	AG
BSC2097	J230703.1 + 043258	PG 2304+042	$23 \ 07 \ 2.9$	$+04 \ 32 \ 56$	Sy1.2	S1.2		15.9		15.44	15.9	0.3	0.04200	0.042	16.32	0.82		-20.7	AG
															\mathbf{F}	antaat		n ä ob at o	Caita

Tabelle A.3: Der BSC-AGN-Datensatz mit den optischen Informationen der AGN-Kandidaten

T			a •
Fortsetzung	von	vorheriger	Seite

BSC	RXJ-Name	Objekt-Name	α	δ	ClsNed	ClsVer	F	Mag1	F	Mag2	MagF	Merr	zNED	zVer	mVer	col1	col2	MBVer	Ltvde
BSC2098	J103438.7+393834	KUG 1031+398	10 34 38.5	+39 38 28	NLSv1	S1n		16.1		15.6	16.1	0.3	0.04244	0.042	15.60			-21.4	AG
BSC2099	$J150744 6 \pm 512709$	MARK 845	15 07 44 8	+51 27 09	Sv1.0	S1 0		16.5	+	15.6	15.6	0.3	0.04605	0.042	15 79	0.93	-0.21	-21.2	AG
BSC2100	$1113105 2 \pm 685156$	EXO 1128 1 ± 6008	11 31 4 8	± 685151	Sv1	S1.0		15.8	1	16.5	15.0	0.3	0.04300	0.042	16.17	0.00	0.35	20.9	AG
BSC2100	1033051.0 ± 053841	HS 0328±0528	03 30 52 3	$\pm 05 38 23$	Sy1	S1		16.1		16.7	16.1	0.3	0.04600	0.043	15 50	0.5	-0.00	20.0	AG
DSC2101 DSC2102	1194911 2 221702	WAS 61	12 42 10 6	+03.38.23 +22.17.02	NI Sv1	Sin	u	16.1		15.7	15.6	0.3	0.04000	0.045	15.09			-21.4	AG
DSC2102	11025212 ± 514020	MADE 149	12 42 10.0	$\pm 51 \ 40 \ 22$	NI Sv1	Sin		15.0		16.06	16.1	0.5	0.04390	0.045	16.21	0.44	0.58	-21.8	AG
BSC2103 BSC2104	11421048 + 281716	MARK 142 MARK 684	10 25 51.5	+314033	Sul	SIL		10.9	1	15.16	15.2	0.05	0.04494	0.045	15.26	0.44	-0.58	-21.0	AG
DSC2104	1101718 0 + 201420	CC F0	14 31 4.7	$\pm 20.14.20$	Sy1 S-1	S11	u	12.1	Ŧ	15.10	15.2	0.2	0.04008	0.040	15.30	0.08	-0.18	-21.9	AG
BSC2105	J101718.0 + 291439	CG 59	10 17 18.3	+29 14 32	Syl	SIN		15.5		15.81	15.5	0.3	0.04761	0.049	15.70	0.45	0.71	-21.7	AG
BSC2106	J112147.3+114420	MARK 734	11 21 47.1	+11 44 19	Syl	51.2		15.5		15.07	15.07	0.15	0.05020	0.049	15.38	0.45	-0.71	-22.0	AG
BSC2107	1093701.0 ± 010548	MARK 707	09 37 1.0	$+01\ 05\ 42$	Sy1.5	S1.5		16.4	-	10.04	16.4	0.3	0.05034	0.051	16.60	0.62	-0.70	-20.8	AG
BSC2108	J174504.2+480238	NPM1G+48.0362	17 45 4.8	$+48\ 02\ 37$	NLSYI	Sin		15.9		16.34	15.9	0.3	0.05400	0.054	16.30	0.00	0.04	-21.3	AG
BSC2109	J135405.7+232549	MARK 662	13 54 6.4	$+23\ 25\ 48$	Sy1.5	S1.5		15.8		15.5	15.8	0.3	0.05500	0.055	16.06	0.69	-0.24	-21.6	AG
BSC2110	J122512.5+321354	RXS J12252+3213	12 25 13.1	+32 14 02	Sy2	S2	u	15.0	+	13.0	14.5	0.5	0.06100	0.059	13.00			-24.8	AG
BSC2111	J114509.3+304724	CSO 109	11 45 10.2	$+30\ 47\ 15$	Sy1.5	S1.5		16.1		16.0	16.1	0.3	0.05960	0.060	16.00		o	-21.8	AG
BSC2112	J103134.2 + 284711	TON 524A	$10 \ 31 \ 34.2$	$+28 \ 47 \ 01$	Sy1.5	SI		16.5		16.18	16.1	0.3	0.06000	0.060	16.69	0.51	-0.47	-21.1	AG
BSC2113	J005335.3 + 124137	I Zw 1	00 53 34.9	$+12 \ 41 \ 35$	NLSy1	S1n		14.4		14.36	14.4	0.3	0.06114	0.061	14.41	0.38	-0.73	-23.4	AG
BSC2115	J145843.1+213614	MS 14564+2147	14 58 42.7	$+21 \ 36 \ 09$	Syl	SI		16.3		15.80	16.3	0.3	0.06200	0.062	15.80			-22.1	AG
BSC2116	J085215.3 + 075356	MS 08495 + 0805	08 52 15.1	+07 53 35	Sy1.2	S1.2		16.0		15.67	15.9	0.3	0.06200	0.063	16.00			-21.9	AG
BSC2117	J124129.4 + 372206	RXS J12414+3722	$12 \ 41 \ 29.5$	+37 22 03	Sy1	S1		16.5	-		16.5	0.3	0.06300	0.063	15.85			-22.1	AG
BSC2118	J114116.2 + 215624	WAS 26	$11 \ 41 \ 16.1$	+21 56 21	Sy1	S1		16.2	+	14.9	15.4	0.5	0.06320	0.063	14.90			-23.0	AG
BSC2119	J123203.6+200930	TON 1542	$12 \ 32 \ 3.5$	+20 09 29	Sy1.0	S1.0		15.2		15.26	15.2	0.3	0.06301	0.064	15.57	0.27	-1.02	-22.4	AG
BSC2120	J005154.8 + 172552	MARK 1148	$00 \ 51 \ 54.6$	+17 25 58	Sy1.5	S1.5		16.5		16.0	16.2	0.5	0.06400	0.064	16.44	0.48	-0.84	-21.5	\overline{AG}
BSC2121	J084742.5 + 344506	PG 0844+349	$08 \ 47 \ 42.5$	+34 45 03	Sy1.0	S1.0		15.0	-		15.0	0.3	0.06400	0.064	14.83	0.33		-23.1	\overline{AG}
BSC2122	J085439.9 + 174111	MARK 1220	08 54 39.2	$+17 \ 41 \ 21$	Sy1	S1		15.8		16.5	15.7	0.7	0.06490	0.064	16.50			-21.4	\overline{AG}
BSC2123	J114516.1 + 794054	UGC 6728	$11 \ 45 \ 16.9$	+79 40 50	Sy1.2	S1.2		16.1	-		16.1	0.3		0.065	15.88			-22.1	\overline{AG}
BSC2124	J014006.0 + 112918	RXS J01401+1129	$01 \ 40 \ 5.1$	+11 29 27	NLSy1	S1n		16.2		16.2	16.2	0.3	0.06500	0.065	16.20			-21.8	AG
BSC2125	J145108.5 + 270933	PG 1448+273	14 51 8.8	$+27 \ 09 \ 24$	NLSy1	S1n		14.9		15.01	14.9	0.3	0.06500	0.065	15.01			-23.0	AG
BSC2126	J225636.8 + 052522	RXS J22566+0525	22 56 36.5	$+05 \ 25 \ 16$	Sy1.5	S1.5		16.2		16.2	16.2	0.3	0.06600	0.065	16.20			-21.8	AG
BSC2127	J105801.2 + 202937	MARK 634	10 58 1.1	+20 29 16	Sy1.0	S1.0		16.2		15.90	16.0	0.3	0.06624	0.066	16.15	0.66	-0.49	-21.9	AG
BSC2128	J162526.8 + 572730	SBS 1624+575	$16\ 25\ 26.4$	+57 27 27		S1		16.3	-		16.3	0.3	0.067	0.067	16.28	0.81		-21.8	AG
BSC2129	J130258.8 + 162423	MARK 783	$13 \ 02 \ 58.8$	+16 24 26	Sy1.5	S1n		16.2		16.0	16.2	0.3	0.06720	0.067	16.04	0.49	-0.50	-22.0	AG
BSC2130	J165407.6 + 392539	EXO 1652.4+3930	16 54 8.1	$+39 \ 25 \ 32$	NLSy1	S1n		16.3	-		16.3	0.3	0.06890	0.069	16.70			-21.4	AG
BSC2131	J114755.3 + 090235	RXS J11479+0902	$11 \ 47 \ 55.1$	$+09 \ 02 \ 28$	Sy1.5	S1.5		16.2		16.2	16.2	0.3	0.069	0.069	16.00			-22.1	AG
BSC2132	J024215.2 + 053037	RXS J02422+0530	$02 \ 42 \ 14.6$	+05 30 35	Sy1	S1	u	14.5	+	16.0	15.2	0.7	0.06900	0.069	16.00			-22.1	AG
BSC2133	J221154.5 + 184157	PG 2209+184	$22 \ 11 \ 53.8$	$+18 \ 41 \ 49$	Sy1.0	S1.0		16.0		15.86	16.0	0.3	0.07000	0.070	16.09	0.65		-22.0	AG
BSC2134	J155818.7 + 255118	MARK 864	15 58 18.8	+25 51 26	Sy1.5	S1.5		16.2		16.5	16.2	0.3	0.07190	0.070	17.10			-21.0	AG
BSC2135	J142129.8 + 474719	H 1419+480	$14 \ 21 \ 29.7$	$+47 \ 47 \ 24$	Sy1.5	S1.5		15.3	-		15.3	0.3	0.07200	0.072	15.40			-22.8	AG
BSC2136	J160209.4 + 261936	MARK 867	$16 \ 02 \ 09.0$	+26 19 46		S1.2		15.9			15.9	0.3	0.07208	0.072	16.00			-22.2	AG
BSC2137	J094553.9 + 423854	IRAS F09427+4252	$09 \ 45 \ 54.4$	+42 38 39	Sy2	S2		16.3		16.3	16.3	0.3	0.07400	0.074	16.30			-22.0	AG
BSC2138	J131422.6+342941	CSO 961	$13 \ 14 \ 22.6$	+34 29 37	Sv1	S1n		16.4		16.3	16.4	0.3	0.07500	0.075	16.30			-22.0	AG
BSC2139	J104427.6+271813	RXS J10444+2718	$10 \ 44 \ 27.7$	+27 18 01	Sv1	S1.5		15.9	+	17.56	15.9	0.3	0.07600	0.075	17.10			-21.2	AG
BSC2140	J134607.5 + 293814	MARK 69	$13 \ 46 \ 8.1$	+29 38 08	Sv1.0	S1.0		15.7	+	16.5	16.2	0.3	0.07600	0.076	16.45	0.52	-0.44	-21.9	AG
BSC2141	J105755.9 + 191527	RXS J10579+1915	10 57 55.8	$+19\ 15\ 20$	Sv1.5	S1.5		15.9	-	15.9	15.9	0.3	0.07720	0.077	15.90			-22.4	AG
BSC2142	J144207.7+352632	MARK 478	$14 \ 42 \ 7.3$	$+35\ 26\ 23$	NLSv1	S1n		14.9		14.95	14.82	0.093	0.07906	0.077	14.91	0.33	-0.84	-23.4	AG
BSC2143	J151921.7 + 590823	SBS 1518+593	$15 \ 19 \ 21.8$	$+59\ 08\ 23$	Sv1.0	S1.0		16.1		16.00	16.1	0.3	0.07810	0.078	16.10	0.44		-22.3	AG
BSC2144	J020026.7 + 024012	MARK 584	$02 \ 00 \ 26.3$	+02 40 09	Sv1.8	S1.8		16.3	+	15.3	15.83	0.05	0.07877	0.078	16.00	0.60	-0.56	-22.4	AG
BSC2145	$J101303.2 \pm 355131$	TON 1187	10 13 3.2	$+35\ 51\ 23$	Sv1.2	S1.2		15.2	+	14.60	14.6	0.3	0.07000	0.079	14.75			-23.7	AG
BSC2146	J1214177 + 140312	PG 1211+143	12 14 17 6	+14 03 13	Sv1	S1 0		14.4		14 63	14.4	0.3	0.08090	0.080	14 46	0.27	-0.75	-24.0	AG
BSC2147	J142630.6 + 390348	BXS J14265+3903	14 26 30.4	+39 03 43	Sv1	S1		16.4		16.4	16.4	0.3	0.081	0.081	16.00		0.1.0	-22.5	AG
BSC2148	$1002337 1 \pm 044220$	BXS J00236+0442	00 23 37 1	+04 42 21	Sv1 5	S1 5		16.5		16.5	16.5	0.3	0.08100	0.081	16.30			-22.2	AG
BSC2149	$J104043.6 \pm 330057$	BXS J10407+3300	10 40 43 9	+33 00 57	NLSv1	Sin		16.5		16.5	16.5	0.3	0.08100	0.081	16.50			-22.0	AG
BSC2150	$J152217 3 \pm 164833$	BXS J15222+1648	15 22 17 3	+16 48 27	AGN	Sin		16.4		16.4	16.4	0.3	0.083	0.083	17.40			-21.1	AG
BSC2151	$1224939 6 \pm 110016$	HS 2247+1044	22 49 39 4	+11 00 28	NLSv1	Sin		15.5		15.5	15.5	0.3	0.08300	0.083	15.80			-22.7	AG
BSC2152	$J_{235959} 1 \pm 083355$	BXS 123599+0833	23 59 59 2	+08 33 55	AGN	S1	11	15.3	-	10.0	16.6	0.3	0.08300	0.084	15.40			-23.1	AG
BSC2152	$1034114 3 \pm 045323$	HS 0338±0443	03 41 14 2	± 04 53 25	Sv1	S1	u	16.3		16.3	16.3	0.3	0.08400	0.084	16 70			-21.8	AG
BSC2154	J142906 7+011708	MARK 1383	14 29 6 6	$+01\ 17\ 04$	Sv1	S1 0		15.1	-	10.0	15.1	0.3	0.08647	0.086	15 21	0.34	-1.04	-23.4	AG
5502104			-1 20 0.0	, 01 1, 01	~5 +	21.0		1011			10.1	0.0	5100011	0.000	LO.21	ntgot	71120 7	abata	Saita

82

Fortsetzung	von	vorheriger	Seite

BSC	RXJ-Name	Objekt-Name	α	δ	ClsNed	ClsVer	F	Mag1	F	Mag2	MagF	M_{err}	zNED	zVer	mVer	col1	col2	M _B Ver	Ltype
BSC2155	J155643.0 + 294838	CG 1331	15 56 42.7	+29 48 47	AGN	S1		16.3		16.08	16.1	0.3	0.08740	0.087	16.16	0.66		-22.5	AG
BSC2157	J161642.9 + 041228	IRAS 16142+0419	$16 \ 16 \ 42.8$	$+04\ 12\ 28$	AGN	S1		16.0		16.0	16.0	0.3		0.091					AG 3)
BSC2158	J083225.1+370737	CBS 74	$08 \ 32 \ 25.3$	+37 07 35	Sv1.2	S1.2		16.4		16.6	16.4	0.3	0.09060	0.092	16.61			-22.1	AG
BSC2159	$J171410.8 \pm 575826$	$SBS 1713 \pm 580$	17 14 11.3	+575834	5	S1		16.5		15.88	16.5	0.3	0.09267	0.092	16.50			-22.2	AG
BSC2160	$J213052.7 \pm 040238$	MS 21283+0349	21 30 53.0	+04 02 49	Sv1	S1		15.2		15.2	15.2	0.3	0.094	0.094	16.34			-22.4	AG
BSC2161	$J105827.1 \pm 223550$	Ton 47	10 58 27.0	+22 35 32	Sv1	S1		16.5		16.6	16.5	0.3	0.09400	0.094	16.30			-22.5	AG
BSC2162	$J113030 1 \pm 493520$	MARK 1447	11 30 29 1	+49 34 57	Sv1.5	S1 5		16.3		16.0	16.3	0.3	0.09590	0.096	16.00			-22.8	AG
BSC2163	$1025437 1 \pm 152558$	BX 10254.6 ± 1525	02 54 36 3	+15 25 44	59110	NLSv1		15.8		15.8	15.8	0.3	0.00000	0.008	10.00			22:0	AG 3)
BSC2164	J140622 2+222350	PG 1404 + 226	14 06 21 8	+22 23 47	NLSv1	Sin		15.8		15.82	15.8	0.3	0.09800	0.098	15.82			-23 1	AG
BSC2165	$1011655 1 \pm 254937$	BXS 101169 ± 2549	01 16 54 1	± 25 49 26	Sv1	S1		16.3		16.3	16.3	0.3	0.09900	0.000	16 70			-22.2	AG
BSC2166	11529075 ± 561604	SBS 1527±564	15 29 7 3	+56 16 07	Sv1	S1 5		15.8		15.8	15.8	0.3	0.09900	0.000	16.63	0.55		-22.2	AG
BSC2167	1081059.0 ± 760245	$PG 0804 \pm 761$	08 10 58 8	+76 02 39	Sv1	S1.0		14.5		15.15	14.5	0.3	0.10000	0.100	15.03	0.32		-23.9	AG
BSC2168	$1112109 9\pm 535125$	BXS 111211 ± 5351	11 21 8 7	+535118	Sv1	S1.0		16.1		16.1	16.1	0.3	0.10270	0.100	16.41	0.41		-22.5	AG
BSC2160	$1112716 6 \pm 190914$	$BXS I11272 \pm 1909$	11 27 16 2	+19.09.19	Sv1.8	S1 8		16.4	_	10.1	16.4	0.3	0.10550	0.105	16.10	0.41		-22.0	AG
BSC2170	$1111803 6 \pm 450657$	$RXS J11180 \pm 4506$	11 18 3 3	+15 06 17 +45 06 47	Sy1.0	S1.0		16.5		16.5	16.5	0.3	0.10600	0.106	16.50			22.5	AG
BSC2170	11337188 ± 242306	IRAS 13340+2438	13 37 18 6	± 24 23 01	NLSv1	S1n		14.1	+	15	14.1	0.3	0.10000	0.100	15.00			24.1	AG
BSC2171 BSC2172	1133718.8 ± 242300 $11134223 \pm 0.0000000000000000000000000000000000$	BXS 111343±0411	11 34 22 5	$\pm 04 11 27$	Sw1	S11 S1		16.4	Ŧ	16.4	16.4	0.3	0.10704	0.107	16.00			-24.1	AG
DSC2172 DSC2172	1150222.0 ± 205026	DVS 115025 2050	15 02 22 0	+04 11 27 +20 50 22	Sy1	S1 S1		16.5		10.4	16.5	0.3	0.10870	0.100	17.40			-23.1	AG
BSC2173 BSC2174	1171601.2 + 211215	DVS 117150 2112	$15\ 05\ 52.0$ $17\ 16\ 2\ 0$	$\pm 29 \ 30 \ 23$ $\pm 21 \ 12 \ 12$	Sy1	S1 5	u	16.0	-	16.0	16.0	0.3	0.11100	0.109	16.00			-21.7	AG
DSC2174	116001.5 ± 170412	MADIZ 977	16 20 11 2	+17.24.27	Sy1 S-1	S1.5 S1.0		15.0		15.0	15.0	0.3	0.11100	0.111	15.00	0.40	0.00	-23.2	AG
DSC2175	J102011.3+172413	DC 1415 451	10 20 11.5	+172427	Sy1 S-1	S1.0 S1.0		15.7		15.40	15.7	0.3	0.11244	0.114	15.79	0.40	-0.88	-23.4	AG
BSC2170	11050271 ± 801204	FG 1415+451	14 17 0.9	+44 50 03	Syl	51.0		15.8		15.74	15.8	0.3	0.11400	0.114	15.24			-24.0	AG
DSC2177	1001010 0 + 401217	HS 1040+8027	10 30 33.4	+60 11 51	Syl	51 C1 F		10.1		10.4	10.1	0.5	0.12000	0.115	10.05	0.90	0.00	-24.2	AG
BSC2178	J091010.2+481317	PG 0906+48	15 54 44 5	+48 13 41	Sy1.5	51.5		16.4		16.00	16.4	0.3	0.11800	0.118	16.46	0.36	-0.80	-22.8	AG
BSC2179	J155444.6+082202	PG 1552+085	15 54 44.5	+08 22 19	Syl	51.0		15.9		16.02	15.9	0.3	0.11900	0.119	16.19	0.20	0.04	-23.0	AG
BSC2180	J091954.9+552120	MARK 106	09 19 55.3	+35 21 37	Syl	51.0		16.4		16.0	16.4	0.3	0.12350	0.122	16.54	0.39	-0.94	-22.8	AG
BSC2181	J134420.1+663720	IRAS 13428+6652	13 44 21.0	+66 37 18	Syl.5	S1.5		16.3		16.3	16.3	0.3	0.12760	0.128	16.19	0 5 4	0.00	-23.2	AG
BSC2182	J101357.0+054313	MARK 876	16 13 57.0	+65 43 09	Syl	51.0		14.9		15.23	14.9	0.3	0.12900	0.129	16.03	0.54	-0.80	-23.5	AG
BSC2183	J093728.4 + 324556	HS 0934+3259	09 37 28.6	+32 45 47	AGN	G1		16.3		16.3	16.3	0.3	0.13000	0.13	16.90			-22.6	AG
BSC2184	J152558.6+181423	RAS J15259+1814	15 25 58.4	+18 14 15	Syl	SI		16.3		16.3	16.3	0.3	0.12960	0.130	17.50			-22.0	AG
BSC2185	J110917.4+714242	IRAS 11058+7159	11 09 19.8	+71 42 33	AGN	SIn	u	16.1		15 00	16.1	0.3	0.12970	0.130	15.59			-23.8	AG
BSC2186	J094653.0 + 132000	MS 09441+1333	09 46 52.6	+13 19 53				15.5		15.20	15.5	0.3	0.131	0.131	16.05			-23.5	AG
BSC2187	J142725.3+194954	MARK 813	14 27 25.1	+19 49 51	Syl	S1.0		15.9		15.5	15.9	0.3	0.11050	0.131	15.42	0.15	-0.79	-24.1	AG
BSC2188	J084445.2 + 765313	V11 Zw 244	08 44 45.9	$+76\ 53\ 08$	Syl	\$1.0		16.1		16.30	16.1	0.3	0.13100	0.131	17.55			-22.0	AG
BSC2189	J225207.7+145448	KUV 22497+1439	22 52 8.0	+145447	QSO	G 1 0		16.0		16.3	16.0	0.3	0.13500	0.135	16.43	0.50	-0.70	-23.2	AG
BSC2190	J152114.8 + 222743	PG 1519+226	15 21 14.2	$+22\ 27\ 43$		S1.0		16.2		16.09	16.2	0.3	0.13700	0.137	16.59			-22.9	AG
BSC2191	J154732.3 + 102446	RXS J15475+1024	$15\ 47\ 32.2$	+10 24 50	Syl	SIn		16.3	-		16.3	0.3	0.13780	0.138	16.20			-23.4	AG
BSC2192	J094733.2 + 100522	RXS J09475+1005	$09 \ 47 \ 33.0$	$+10\ 05\ 07$	Sy1	S1.5		16.0		16.0	16.0	0.3	0.13920	0.139	17.20			-22.5	AG
BSC2193	J002913.9 + 131605	PG 0026+12	$00 \ 29 \ 13.7$	$+13 \ 16 \ 03$	Sy1	S1.2		15.5		15.41	15.5	0.3	0.14200	0.145	15.70	0.29	-0.78	-24.0	AG
BSC2194	J030855.8+110320	HS 0306 + 1051	$03 \ 08 \ 56.6$	$+11 \ 03 \ 15$				15.2		15.2	15.2	0.3	0.15000	0.15	16.49			-23.2	AG
BSC2195	J135436.0+180523	PG 1352+183	13 54 35.7	$+18 \ 05 \ 16$	Sy1	S1.0		15.6		15.5	15.6	0.3	0.15200	0.152	15.58	0.08		-24.3	AG
BSC2196	J165551.7 + 214559	RXS J16558+2146	16 55 51.3	+21 45 59	Sy1.5	S1.5	u	16.0	+	17.1	16.0	0.3	0.15370	0.154	17.10			-22.8	AG
BSC2197	J111830.0 + 402557	PG 1115+407	$11 \ 18 \ 30.3$	$+40 \ 25 \ 54$	Sy1	S1.0		16.0		16.02	16.0	0.3	0.15400	0.154	14.57			-25.3	AG
BSC2198	J005452.3 + 252534	PG 0052+251	00 54 52.1	+25 25 37	Sy1.2	S1.2		15.5		15.42	15.5	0.3	0.15500	0.155	15.43			-24.5	AG
BSC2199	J130947.1 + 081949	PG 1307+085	$13 \ 09 \ 47.0$	+08 19 49	Sy1	S1.2		15.3		15.28	15.3	0.3	0.15500	0.155	15.32	0.21		-24.6	\overline{AG}
BSC2200	J080132.3 + 473618	RXS J08015+4736	$08 \ 01 \ 32.0$	$+47 \ 36 \ 14$	BLRG	S1		15.8		15.5	15.8	0.3	0.15830	0.157	16.10	0.37		-23.8	AG
BSC2201	J122906.5 + 020311	3C 273.0	$12 \ 29 \ 6.7$	$+02 \ 03 \ 07$	Sy1	S1.0		12.2		12.86	12.2	0.3	0.15834	0.158	13.05	0.20	-0.87	-26.9	\overline{AG}
BSC2202	J124931.6 + 523046	SBS 1247+527	$12 \ 49 \ 31.6$	$+52 \ 30 \ 37$				16.5		16.5	16.5	0.3	0.161	0.161	16.99			-22.9	AG
BSC2203	J015950.6 + 002337	MARK 1014	$01 \ 59 \ 50.1$	+00 23 39	Sy1	S1.5		15.6		15.69	15.6	0.3	0.16301	0.163	16.15	0.46	-0.77	-23.9	AG
BSC2204	J140516.3 + 255536	PG 1402+261	$14 \ 05 \ 16.2$	+25 55 32	Sy1	S1.0		15.4		15.57	15.4	0.3	0.16400	0.164	15.54			-24.5	AG
BSC2205	J170231.2 + 324722	RXS J17025+3247	$17 \ 02 \ 31.0$	$+32 \ 47 \ 18$	NLSy1	S1n		15.9		15.9	15.9	0.3	0.16400	0.164	16.19			-23.7	AG
BSC2206	J135625.3 + 251527	RXS J13564+2515	13 56 25.4	$+25 \ 15 \ 22$				16.2		16.2	16.2	0.3	0.165	0.165	15.00			-25.0	AG
BSC2207	J023739.9 + 181945	RXS J02376+1819	$02 \ 37 \ 40.4$	+18 19 40	Sy1	S1		16.1		16.1	16.1	0.3	0.16800	0.168	16.40			-23.7	AG
BSC2208	J161659.4 + 643846	HS 1616+6445	$16 \ 16 \ 58.6$	$+64 \ 38 \ 41$		S1		16.4		17.0	16.4	0.3	0.17100	0.171	17.00			-23.1	AG
BSC2209	J095405.0 + 660836	FBS 0950+664	09 54 3.9	$+66 \ 08 \ 20$	Sy1	S1		16.4		16.4	16.4	0.3	0.172	0.172	17.00			-23.1	AG
BSC2210	J113737.4 + 103931	RXS J11376+1039	$11 \ 37 \ 38.0$	+10 39 30	Sy1	S1	u	16.2	-		16.2	0.3	0.17380	0.174	16.60			-23.6	AG
															Fe	ortset	zung	nächste	Seite

A.1. Aufstellung des BSC-AGN-Datensatzes

-			~ .
Fortsetzung	von	vorheriger	Seite

BSC	RXJ-Name	Objekt-Name	α	δ	ClsNed	ClsVer	F	Mag1	F	Mag2	MagF	Merr	zNED	zVer	mVer	col1	col2	M _B Ver	Ltype
BSC2211	J024740.7+194103	MS 02448+1928	$02 \ 47 \ 40.8$	+19 40 56	Sv.0	S1.0		16.2		16.66	16.2	0.3	0.17600	0.176	16.77	0.11	-0.89	-23.4	AG
BSC2212	$J115348.8 \pm 112750$	PG 1151+117	11 53 49.2	+11 28 30	Sv1	S1.0		15.1		15.51	15.1	0.3	0.17600	0.176	15.97			-24.2	AG
BSC2213	J111908 1 + 211915	PG 1116 + 215	11 19 8 6	+21 19 18	Sv1?	S1.0		14.9		15 17	14.9	0.3	0 17650	0.177	14.85	0.13		-25.3	AG
BSC2214	J120347.5 + 520748	SBS 1201+524	12 03 47.6	+52 07 47	OSO			16.3		16.3	16.3	0.3	0.17700	0.177	16.49	0.20		-23.6	AG
BSC2215	J100542.2 + 433244	FBS 1002 + 437	10 05 41.9	+43 32 39	NLSv1	S1n		16.5		16.5	16.5	0.3	0.17820	0.179	16.39			-23.8	AG
BSC2216	$J101043 8 \pm 004347$	0.1008 ± 0058	10 10 44 5	+004331	Sv1	S1		16.3		16.07	16.3	0.3	0 17796	0.18	16.50			-23.7	AG
BSC2217	J131218 0 + 351524	$PG_{1309+355}$	13 12 17 7	+35 15 19	Sv1	S1 2	11	16.1		15 45	16.1	0.3	0 18400	0.184	15.64			-24.6	AG
BSC2218	$1101455 6\pm 003349$	$PG 1012 \pm 008$	10 14 54 9	$\pm 00 33 36$	Sv1	S1.2	u	16.0	_	10.10	16.0	0.3	0 18745	0.185	16.01	0.42		-24.3	AG
BSC2210	$1092555 0 \pm 195408$	$PG 0923 \pm 201$	09 25 54 7	+195405	0 y 1	S1.0		16.0		16.04	16.0	0.3	0.19000	0.100	15 39	0.42		-24.8	AG
BSC2220	$1122020 1 \pm 451342$	HS 1227 ± 4530	12 29 28 9	± 45 13 38	050	01.0		16.2		16.8	16.2	0.3	0 19400	0 194	16.69			-23.6	AG
BSC2221	$1162607 6 \pm 335902$	$BXS_{116261\pm3359}$	16 26 7 1	+335914	Sv1.0	S1 0		16.5		16.5	16.5	0.3	0.20400	0.204	15.80			-20.0	AG
BSC2221	$1144413 0 \pm 063230$	BX 11444.2 ± 0632	14 44 14 7	$\pm 06 33 06$	0y1.0	S1.0		16.2		16.2	16.2	0.3	0.20400	0.204	10.00			-24.1	AG 3)
BSC2222	10050484 ± 302652	PC 0947+396	00 50 48 4	$\pm 30.26.49$	Sv1.0	S1 0		16.2		16.40	16.2	0.3	0.20600	0.206	16 30			24.1	AG
BSC2223	11723205 ± 341756	$P_{1,2,1} = 10000000000000000000000000000000000$	17 23 20 8	$+33\ 20\ 43$ $+34\ 17\ 58$	Sy1.0	S1.0		15.4		10.40	15.4	0.3	0.20000	0.200	15.58	0.12		25.0	AG
BSC2224	$1171013 2 \pm 334410$	BZ 1721-34 BXS 117109-3344	$17\ 20\ 20.0$ $17\ 10\ 13\ 4$	± 33 44 01	Sy1.0	S1.0		16.4	v	16.4	16.4	0.3	0.20000	0.200	15.82	0.12		-23.0	AG
DSC2223	1149612.2 ± 105521	2E 1422 + 2008	14 26 12 4	+10.55.25	Sy1.0	S1.0		16.1		16.0	16.1	0.3	0.20000	0.200	16.00			-24.1	AG
BSC2220	1104111 = 1900010	DVS 110/12 2020	$14\ 20\ 13.4$ 10\ 41\ 11\ 0	+19 33 23	050	51.0		16.2		16.2	16.2	0.3	0.21000	0.21	17.00			-24.0	AG
DSC2221	$1152040 4 \pm 202601$	RXS J10412+2828	15 20 40 5	+20 26 04	Q30 S-1	S 1n		16.4		16.7	16.4	0.3	0.21000	0.210	16.70			-23.4	AG
BSC2228	1120818 7 024420	DYS 112082 0244	12 00 19 0	+20 20 03	Syr	5111	u	16.4		16.7	16.4	0.3	0.21000	0.210	17.20			-23.9	AG
DSC2229	1150707 0 1154109	MC 15051 1551	15 08 18.8	+ 15 40 58	C1	C1 0		16.4		17.94	10.4	0.3	0.228	0.228	17.29	0.11	0.96	-23.4	AG
DSC2230	1119420 5 + 420151	PC 1121 + 422	11 24 20 1	+13 40 38 +42 01 45	Sy1	S1.2 S1.0		15.9	x	16.02	15.9	0.3	0.23000	0.230	15.94	0.11	-0.80	-23.4	AG
DSC2231	1005652 4 411524	PC 0052 415	11 24 39.1 00 FG FD 2	$\pm 41.15.92$	Sy1.0	S1.0		15.6		10.02	15.0	0.3	0.23400	0.234	15.04	0.02	0.84	-25.0	AG
DSC2232	1144201 7 404526	PG 0955+415	14 42 2 5	+41 15 25	Sy1.0	S1.0 MI C1		10.4	-	17	10.4	0.3	0.23410	0.239	15.29	-0.03	-0.84	-23.0	AG 2)
DSC2233	1082658 2 442612	US 1220	14 45 2.5	$+40\ 45\ 24$	050	NLSy1		10.0		156	10.5	0.3	0.95500	0.248	15.00			25.0	AG 5)
DSC2234	1145608 6 + 275008	US 1329	14 56 9 7	$+44\ 20\ 01$	050			10.4		16.0	10.4	0.3	0.25500	0.249	16.09			-20.9	AG
DSC2233	$J143008.0 \pm 273008$	H5 1455+2802	14 30 8.7	+275007	0.50	C1 0		10.4		10.4	10.4	0.3	0.25000	0.25	16.20			-24.0	AG
BSC2236	J103124.1 + 295253	H 1629+299	10 31 24.4	+29 52 59	Sy1.2	51.2		10.7	+	16.49	15.7	0.3	0.25400	0.256	16.69			-24.2	AG
BSC2237	J085828.3+342355	TON 978	08 58 28.7	$+34\ 23\ 43$	Syl	51		16.4		10.4	16.4	0.3	0.25000	0.257	16.40			-24.6	AG
BSC2238	$J_{213944.3+024612}$	RAS J21397+0246	21 39 44.1	+02 46 05	Syl	51		16.0		16.1	16.0	0.3	0.26000	0.26	16.19	0.11	0.05	-24.8	AG
BSC2239	J154744.2+205156	3C 323.1	15 47 43.4	+20.52.15	G 1 0	51.2		16.3		15.05	10.3	0.3	0.26430	0.200	15.80	0.11	-0.85	-24.3	AG
BSC2240	$J144645.8 \pm 403510$	PG 1444+407	14 46 45.9	$+40\ 35\ 05$	Sy1.0	51.0		15.5		15.95	15.5	0.3	0.26730	0.267	15.34			-20.7	AG
BSC2241	J144011.0+015033	RAS J14401+6156	14 40 12.8	+61 50 33	Sy1.5	51.5		16.4		10.4	16.4	0.3	0.27600	0.270	17.09			-24.0	AG
BSC2242	3001937.0 ± 260316	4C 25.01	00 19 39.7	$+26\ 02\ 51$	G 1	51		16.3	-		16.3	0.3	0.28400	0.284	15.79			-25.4	AG
BSC2243	$J105444.4 \pm 483145$	RAS J10547+4831	10 54 44.7	+48 31 40	Syl	51		15.7		15.7	15.7	0.3	0.28600	0.286	15.79			-25.4	AG
BSC2244	J113108.9+311409	B2 1128+31	11 31 9.6	+31 14 06	Sy1.0	51.0		15.6	+	16.6	15.6	0.3	0.28900	0.289	16.69	0.00		-24.5	AG
BSC2245	1092837.3+602509	SBS 0925+606	09 28 37.9	$+60\ 25\ 19$	050			16.5		16.2	16.5	0.3	0.29600	0.296	16.98	0.26		-24.4	AG
BSC2246	J125719.9+442922	FBS 1255+447	12 57 19.5	+44 29 34	QSU	G1 0		16.2		16.2	16.2	0.3	0.30000	0.30	16.48	0.00	. ==	-24.9	AG
BSC2247	J110412.4+765859	3C 249.1	11 04 14.0	+765857	AGN	\$1.0		15.6		15.72	15.6	0.3	0.31150	0.313	15.70	-0.02	-0.77	-25.8	AG
BSC2248	J142455.3 + 421413	RAS J14249+4214	14 24 55.6	+42 14 06	QSO	G1 0		16.3		16.4	16.3	0.3	0.31600	0.316	16.42	0.10	0.00	-25.1	AG
BSC2249	J100402.4+285540	TON 28	10 04 2.6	$+28\ 55\ 34$	AGN	S1.0		15.7		15.5	15.7	0.3	0.32970	0.329	16.17	0.12	-0.90	-25.4	AG
BSC2250	J121920.9 + 063838	PG 1216+069	12 19 20.9	$+06\ 38\ 37$	Sy1.0	S1.0		16.0		15.68	16.0	0.3	0.33130	0.334	15.65			-26.0	AG
BSC2251	J122542.3+205503	RAS J12257+2055	12 25 41.8	$+20\ 55\ 04$	NLSyI	SIn		15.9		15.9	15.9	0.3	0.33500	0.335	16.39			-25.1	AG
BSC2252	J125520.2 + 014417	Q 1252+0200	12 55 19.7	+01 44 10				15.8		15.48	15.8	0.3	0.34200	0.345	17.19			-24.4	AG
BSC2253	J155056.8 + 585614	SBS 1549+590	15 50 56.8	+585606	Syl	SI		16.4		16.4	16.4	0.3	0.34800	0.348	17.63	0.21		-24.1	AG
BSC2254	J094952.8 + 390214	KUV 09468+3916	09 49 52.8	$+39\ 02\ 04$	QSO			16.1	-		16.1	0.3	0.36000	0.36	15.99			-25.8	AG
BSC2255	J114758.4 + 271507	US 2964	11 47 58.6	$+27\ 15\ 00$	QSO	<i></i>		16.2		16.2	16.2	0.3	0.36300	0.363	16.30			-25.5	AG
BSC2256	J151443.1 + 365059	B2 1512+37	$15 \ 14 \ 43.0$	$+36\ 50\ 50$	Sy1.2	S1.2		16.1		15.5	16.1	0.3	0.37070	0.370	16.25	-0.02	-1.05	-25.6	AG
BSC2257	J121038.9 + 315704	B2 1208+32A	$12 \ 10 \ 37.6$	$+31\ 57\ 04$	Sy1.2	S1.2		16.5		16.57	16.5	0.3	0.38800	0.389	16.91	0.23	-0.72	-25.1	AG
BSC2258	J021707.8+110403	PKS 0214+10	$02 \ 17 \ 7.6$	+11 04 08	Sy1.0	S1.0		15.7		16.5	15.7	0.3	0.40800	0.408	16.46			-25.6	AG
BSC2259	J123325.8+093119	Q 1230+0947	12 33 25.8	+09 31 23	AGN			16.1		16.15	16.1	0.3	0.41500	0.415	16.06			-26.0	AG
BSC2260	J092748.9+403838	KUV 09247+4052	09 27 49.2	+40 38 29	QSO			16.0	-	10-	16.0	0.3	0.41900	0.419	16.26			-25.8	AG
BSC2261	J004404.6+013344	HS 0041+0117	00 44 4.9	+01 33 42	QSO	<i></i>		16.3		16.3	16.3	0.3	0.42800	0.426	17.09			-24.9	AG
BSC2262	J140031.3 + 040450	PG 1358+04	$14 \ 00 \ 32.0$	$+04 \ 04 \ 58$	Sy1.2	S1.2		16.4		16.31	16.4	0.3	0.42700	0.427	16.39	0.08	-0.83	-25.7	AG
BSC2263	$J_{132325.0+343058}$	CSO 981	13 23 25.0	+34 30 58	QSO			16.4	-		16.4	0.3	0.44400	0.444	17.19			-24.9	AG
BSC2264	J170603.2+685736	RXS J17060+6857	17 06 1.9	$+68\ 57\ 34$	~	<i></i>		15.8		15.9	15.8	0.3	0.44900	0.449	16.04			-26.2	AG
BSC2265	J152840.3 + 282529	TON 236	$15\ 28\ 40.6$	$+28 \ 25 \ 28$	Sy1.5	S1.2		16.0		16.4	16.0	0.3	0.45000	0.450	16.44	0.05	-0.60	-25.8	AG
															F	ortset	zung i	nächste	Seite

Fortset	Fortsetzung von vorheriger Seite BSC RXJ-Name Objekt-Name α δ ClsNed ClsVer F Mag1 F Mag2 MagF Merr zNED zVer mVer col1 col2 M _B Ver Ltype																		
BSC	RXJ-Name	Objekt-Name	α	δ	ClsNed	ClsVer	F	Mag1	F	Mag2	MagF	M_{err}	zNED	zVer	mVer	col1	col2	$M_B Ver$	Ltype
BSC2266	J000559.1 + 160955	PKS 0003+15	$00 \ 05 \ 59.2$	+16 09 48	Sy1.2	S1.2		15.8		16.4	15.8	0.3	0.45090	0.450	16.51	0.11	-0.70	-25.7	AG
BSC2267	J093502.0 + 433108	US 737	$09 \ 35 \ 2.6$	$+43 \ 31 \ 09$	QSO			15.8		16.3	15.8	0.3	0.45700	0.456	16.47			-25.8	AG
BSC2268	J141956.4 + 373917	Q 1417+3752	$14 \ 19 \ 56.6$	+37 39 11				16.3	+	17.17	16.3	0.3	0.48000	0.480	17.49			-24.8	AG
BSC2269	J002811.6 + 310342	RXS J00281+3103	$00 \ 28 \ 10.7$	$+31 \ 03 \ 47$	Sy1			15.2	-		15.2	0.3	0.50000	0.500	15.79	0.37		-26.7	AG
BSC2270	J125436.8 + 053702	RX J1254.6+0537	12 54 36.4	$+05 \ 37 \ 19$		QSO		16.5		16.5	16.5	0.3		0.512	0.00				AG 3)
BSC2271	J101031.1 + 255959	RXS J10105+2559	$10 \ 10 \ 30.5$	+25 59 48				16.4		16.7	16.4	0.3	0.51200	0.512	16.69			-25.7	AG
BSC2272	J124654.3 + 131258	Q 1244+1329	$12 \ 46 \ 53.9$	$+13 \ 13 \ 10$				16.4		17.07	16.4	0.3	0.51200	0.512	17.49			-24.9	AG
BSC2273	J154511.3 + 345259	RXS J15451+3452	$15 \ 45 \ 11.0$	+34 52 43		S1		16.4		16.4	16.4	0.3	0.51800	0.518	17.18			-25.4	AG
BSC2274	J014942.9 + 001504	SDSS J014942	$01 \ 49 \ 42.5$	$+00 \ 15 \ 01$	QSO			16.3		16.42	16.3	0.3	0.55225	0.552					AG 1)
BSC2275	J162022.5+173616	3C 334.0	16 20 21.8	+17 36 23		S1.5		16.4		16.41	16.4	0.3	0.55510	0.555	16.53	0.12	-0.79	-26.2	AG
BSC2276	J115841.8 + 625418	4C 63.15	11 58 40.1	+62 54 26	Sy1.2	S1.2		16.1		16.8	16.1	0.3	0.59400	0.592	17.79			-25.1	AG
BSC2277	J164258.9+394822	3C 345.0	$16 \ 42 \ 58.7$	+39 48 36	HPQ	HP	u	16.5		15.96	16.5	0.3	0.59280	0.594	16.25	0.29	-0.50	-26.6	AG
BSC2278	J101027.9+413242	4C 41.21	$10 \ 10 \ 27.5$	$+41 \ 32 \ 38$		S1.2		16.2		16.5	16.2	0.3	0.61230	0.613	15.97			-27.0	AG
BSC2279	J110715.1 + 162810	MC 1104+167	$11 \ 07 \ 14.9$	$+16\ 28\ 01$	Sy1	S1		15.9		15.7	15.9	0.3	0.63200	0.632	15.91	0.21	-0.65	-27.1	AG
BSC2280	J173003.5+330111	RXS J17300+3301	17 30 3.8	$+33 \ 01 \ 02$	Sy1.0	S1.0		16.5		16.5	16.5	0.3	0.63200	0.632	17.09			-25.8	AG
BSC2281	J234734.6 + 271910	RXS J23475+2719	$23 \ 47 \ 35.1$	+27 19 01	QSO			16.1		16.06	16.1	0.3	0.64600	0.646	16.41	0.35		-26.7	AG
BSC2282	J113957.9 + 654753	3C 263.0	$11 \ 39 \ 57.3$	+65 47 49	LPQ	S1.2	u	16.1		16.32	16.1	0.3	0.64600	0.652	16.50	0.18	-0.56	-26.6	AG
BSC2283	J120423.7+433059	PG 1201+436	$12 \ 04 \ 24.0$	$+43 \ 30 \ 55$	QSO			16.5		16.5	16.5	0.3	0.66300	0.663	16.23			-26.9	AG
BSC2284	J234636.7+093036	PKS 2344+09	$23 \ 46 \ 36.7$	$+09 \ 30 \ 45$	LPQ	S1.5		16.2		15.97	16.2	0.3	0.67700	0.673	16.23	0.26	-0.60	-26.9	AG
BSC2285	J140741.3 + 293335	HS 1405+2947	$14 \ 07 \ 42.1$	+29 33 21				16.5		16.5	16.5	0.3	0.68000	0.68	16.89			-26.2	AG
BSC2286	J135703.6 + 191915	PKS 1354+19	13 57 4.4	+19 19 06	Sy1.5	S1.5	u	16.2		16.02	16.2	0.3	0.72000	0.719	16.33	0.30	-0.62	-27.0	AG
BSC2287	J100102.9 + 594426	SBS 0957+599	$10 \ 01 \ 2.5$	+59 44 13				16.2		16.45	16.2	0.3	0.752	0.752	16.45	0.34		-27.0	AG
BSC2288	J153935.2 + 473545	PG 1538+477	$15 \ 39 \ 34.7$	+47 35 31	Sy1.2	S1.2	u	16.3		16.01	16.3	0.3	0.77210	0.772	15.81			-27.7	AG
BSC2289	J114343.1 + 674505	FBS 1140+680	$11 \ 43 \ 43.2$	+67 44 56	QSO			16.5		16.5	16.5	0.3	0.79600	0.796	16.82			-26.8	AG
BSC2290	J163302.3 + 234915	HS 1630+2355	$16 \ 33 \ 2.6$	+23 49 28				15.7		15.7	15.7	0.3	0.82000	0.822	16.09			-27.6	AG
BSC2291	J225358.0 + 160855	3C 454.3	22 53 57.7	$+16 \ 08 \ 53$	HPQ	HP	u	15.2	+	16.1	15.2	0.3	0.85900	0.859	16.57	0.47	-0.66	-27.3	AG
BSC2292	J140924.1+261827	PG 1407+265	$14 \ 09 \ 23.9$	$+26\ 18\ 19$	AGN			15.9		15.73	15.9	0.3	0.94000	0.945	16.07	0.33		-28.0	AG
BSC2293	J115120.0 + 543742	PG 1148+549	$11 \ 51 \ 20.4$	$+54 \ 37 \ 30$	QSO			16.1		15.82	16.1	0.3	0.96900	0.978	16.53	0.71		-27.7	AG
BSC2294	J214805.4 + 065737	PKS 2145+06	$21 \ 48 \ 5.4$	$+06\ 57\ 40$	LPQ		u	16.4		16.47	16.4	0.3	0.99000	0.999	16.85	0.38	-0.82	-27.4	AG
BSC2295	J142107.1+253818	KUV 14189+2552	$14 \ 21 \ 7.5$	+25 38 20	AGN			15.7		16.13	15.7	0.3	1.05000	1.05	16.79			-27.5	AG
BSC2296	J171937.9 + 480409	PG 1718+481	17 19 38.2	+48 04 12	QSO			14.8		15.33	14.8	0.3	1.08400	1.083	14.60			-29.8	AG
BSC2298	J125005.7+263118	PG 1247+268	12 50 5.7	+26 31 06	QSO			15.9		15.8	15.9	0.3	2.03800	2.042	15.60			-30.1	AG
BSC2299	J084125.1+705342	S5 0836+71	$08 \ 41 \ 24.4$	+70 53 40	LPQ			16.5		16.5	16.5	0.3	2.17200	2.218	17.19			-28.9	AG

BSC	RXJ-Name	Objekt-Name	α	δ	ClsNED	ClsVer		Mag1		Mag2	zNED	zVer	mVer	col1	col2	Ltype	
BSC3230	J132938.2+582507	NGC 5204	$13 \ 29 \ 36.4$	+58 25 05	HII				x	11.73	201						GA
BSC3231	J095550.4 + 694052	MESSIER 82	09 55 50.8	$+69 \ 40 \ 43$	HII			9.2		9.30	203						GA
BSC3232	J122814.0 + 440631	NGC 4449	12 28 11.3	$+44 \ 05 \ 30$	HII				x	9.99	207						GA
BSC3233	J121345.2 + 363754	NGC 4190	$12 \ 13 \ 44.0$	$+36 \ 37 \ 52$					x	13.9	228						GA
BSC3234	J131549.3 + 420154	MESSIER 063	$13 \ 15 \ 49.0$	$+42 \ 01 \ 45$	LINER				x	9.31	504						GA
BSC3235	J122945.9+075927	MESSIER 049	$12 \ 29 \ 46.6$	$+08 \ 00 \ 01$	Sy2				x	9.37	997						GA
BSC3236	J103423.1+734525	NGC 3252	$10 \ 34 \ 22.2$	+73 45 45			р	12.8	x	14.12	1156						GA
BSC3237	J153840.1 + 592118	NGC 5982	$15 \ 38 \ 39.7$	$+59 \ 21 \ 20$				15.2	x	12.04	3017						GA
BSC3238	J041938.6 + 022439	NGC 1550	$04 \ 19 \ 38.0$	+02 24 35			u	10.1	x	13.07	3714						GA
BSC3239	J085001.4 + 701804	NGC 2650	$08 \ 49 \ 58.4$	$+70\ 17\ 57$				14.9	x	14.08	3826						GA
BSC3240	J233229.6+235548	UGC 12655	$23 \ 32 \ 29.0$	+23 55 50				16.5	x	13.84	5177						GA
BSC3241	J001530.2+172009	NGC 0057	$00\ 15\ 30.8$	+17 19 39				16.5	x	12.67	5440						GA
BSC3242	J015622.6 + 053736	NGC 0741	$01 \ 56 \ 21.2$	+05 37 39				15.2	x	12.2	5561						GA
BSC3243	J121754.7 + 583936	MRK 0202	$12 \ 17 \ 55.0$	+58 39 34				16.1		16.00	6300						GA
BSC3244	J132409.9 + 135855	NGC 5129	$13 \ 24 \ 10.0$	+13 58 34				15.5	x	13.02	6908						GA
BSC3245	J091949.1+334532	NGC 2832	09 19 46.8	+33 44 55				16.2	x	12.87	6948						GA
BSC3246	J171519.5 + 572430	NGC 6338	17 15 22.9	+57 24 38				16.1	x	13.38	8220						GA
BSC3247	J143450.7+033834	CGCG 047-107	$14 \ 34 \ 50.6$	+03 38 41			u	12.9	x	15.3	8588						GA
BSC3248	J162302.0+375506	NGC 6137	$16 \ 23 \ 3.0$	+37 55 19			u	13.3		13.40	9303						GA
BSC3249	J160456.8 + 235604	NGC 6051	$16 \ 04 \ 56.6$	+23 55 55					x	14.23	9578						GA
BSC3250	J131905.8 + 310854	CGCG 160-193	$13 \ 19 \ 5.9$	$+31 \ 08 \ 52$	AGN			16.4	x	15.6	9630						GA
BSC3251	J095534.7 + 690338	NGC 3031	09 55 33.1	+69 03 51	Sy1.8	S3b		10.0	-			0.000	11.63	1.12	0.72		GA
BSC3252	J112016.7+125917	NGC 3627	$11 \ 20 \ 14.9$	+12 59 28	Sy2	S3			x	9.65		0.002	11.94	1.01	0.53	-17.4	GA
BSC3253	J124249.7 + 024117	NGC 4636	$12 \ 42 \ 49.7$	$+02 \ 41 \ 14$	LINER	S3b			x	10.43		0.003	11.84	0.78	0.73	-18.7	GA
BSC3254	J131056.3+370337	NGC 5005	$13 \ 10 \ 56.2$	+37 03 28	LINER	S3b		15.9	-			0.003	13.67	1.00	0.54	-16.6	GA
BSC3255	J103846.7+533002	NGC 3310	$10 \ 38 \ 45.8$	$+53 \ 30 \ 11$	HII	H2		0.0	x	11.15		0.003	12.15	0.30	-0.45	-18.8	GA
BSC3256	J115756.1 + 552717	NGC 3998	11 57 55.8	$+55 \ 27 \ 16$	LINER	S3b		11.2		11.61		0.004	12.10	1.01	0.51	-18.8	GA
BSC3257	J121506.7+331129	NGC 4203	$12 \ 15 \ 5.0$	+33 11 48	LINER	S3b		15.3	+	11.8		0.004	11.99	0.99	0.55	-18.9	GA
BSC3258	J123743.6+114909	NGC 4579	$12 \ 37 \ 43.5$	+11 49 04	Sy1.9	S3b			x	10.48		0.005	11.72	0.97	0.49	-19.7	GA
BSC3259	J112831.5 + 583343	MARK 171	$11 \ 28 \ 30.6$	+58 33 32	HII	H2		14.1	x	11.8		0.010	12.86	0.33	-0.41	-20.7	GA
BSC3260	J015240.2+014718	NPM1G +01.0067	01 52 39.6	$+01 \ 47 \ 16$	Sy1			16.4		16.62	0.08000						$_{\rm BL}$
BSC3261	J113448.4 + 490438	IC 0712	$11 \ 34 \ 49.1$	+49 04 39				16.3	x	14.67	0.03355						GA
BSC3262	J165800.9 + 275103	NGC 6269	16 57 58.0	+27 51 15					x	13.32	0.03480						GA
BSC3263	J095021.0 + 754454	CGCG 350-032	$09 \ 50 \ 18.7$	+75 44 52			u	12.5	x	15.6	0.03688						GA
BSC3264	J120511.7+392043		$12 \ 05 \ 10.3$	+39 20 47			u	15.6	x	17.20	0.03700						GA
BSC3265	J212324.3+021137	CGCG 375-033	$21 \ 23 \ 24.2$	+02 11 32				16.3	x	14.9	0.04818						GA
BSC3266	J091308.7+474222		$09 \ 13 \ 7.7$	$+47 \ 42 \ 29$			u	14.5	x	17.02	0.05110						GA
BSC3267	J145431.4 + 183834	NGC 5778	14 54 31.4	$+18 \ 38 \ 31$			u	14.0	x	14.80	0.05921						GA
BSC3268	J025858.2 + 133449	UGC 02450	$02 \ 58 \ 57.8$	+13 34 56			u	15.9		15.32	0.07430						GA
BSC3269	J134931.6 + 275955		$13 \ 49 \ 31.6$	+28 00 01			u	15.1	x	16.3	0.07663						GA
BSC3270	J144218.9 + 221820	UGC 09480	$14 \ 42 \ 19.1$	+22 18 04			р	15.8	x	17.32	0.09680						GA

Tabelle A.4: Der Teil des BSC-AGN-Datensatz mit Objektenklassifizierung als nahe Galaxie.

BSC	RXJ-Name	Objekt-Name	α	δ	ClsNED	ClsVer		Mag1		Mag2	MagF	M_{err}	zNED	zVer	mVer	M_BVer	Ltype
BSC2114	J134917.0 + 220042	IRAS F13469+2215	$13 \ 49 \ 15.2$	+22 00 29	Sy1.5	S1	u	15.3	-		17.0	0.3	0.06200	0.061	14.9	-22.9	AG 15)
BSC2156	J135851.7 + 251148	RXS J13588+2511	13 58 51.9	+25 11 39	Sy1.5	S1n	u	16.2	-		18.1	0.3	0.08860	0.089	17.0	-21.7	AG 15)
BSC2297	J100121.5 + 555351	0957+561A	$10 \ 01 \ 21.0$	+55 53 48	QSO			16.4		17.0			1.41480	1.413	17.0	-28.1	AG 14)
PSC1015	1112101 8 + 420240	DV 11121 2 4222	11 21 22 5	1 42 22 40	ACN			16.2		16.2							CV(4)
BSC1015 BSC1007	1005822 0 + 065456	DV 10058 2 + 0654	00 58 22 2	+43 22 40	AGN	050		16.4		16.4				0.246			NO 0)
BSC1007	$1115537 0 \pm 125251$	VIII Zw 153a	11 55 35 3	± 125253		Q.50		16 36	19.0	10.4				0.340		NO 12)	110 9)
P2C1018	J110007.0+120201	v111 Zw 153a	11 00 30.3	+12 32 33				10.30	19.0							NO 12)	

Tabelle A.5: Der BSC-AGN-Datensatz mit unzureichenden optischen Informationen

A.2 Informationen aus den anderen Frequenzbändern für den BSC-AGN-Datensatz

Es besteht bei der Webabfrage des 2MASS-PSC-Katalogs die Möglichkeit diejenigen Spalten des Gesamtkatalogs auszuwählen, die man für seine Arbeit benötigt. Zusätzlich zu den reinen Informationen aus dem nahem Infrarot (Helligkeiten) sind noch Informationen über optische Eigenschaften der 2MASS-Quelle aus dem US-NO A2.0 (Monet et al. 1998) und Tycho 2 (Høg et al. 2000) übernommen worden. Desweiteren wurde nach einem Verweis für einen Eintrag im XSC gesucht, um eine bessere Übereinstummung der Daten sicherzustellen. Das Ergebnis der Abfrage ist die anschließende Tabelle A.6 des PSC. Die Spalteneinträge sind wie folgt:

Spalte	Bedeutung
BSC	für die Arbeit verwendete Katalognummer des AGN
α	Rektaszension als Dezimalzahl (Equinox 2000)
δ	Deklination als Dezimalzahl (Equinox 2000)
Dist	Entfernung von opt. Koordinaten in "
Ori	Orientierungswinkel der PSC-Quelle
j	<i>J</i> -Helligkeit
dj	Fehler der J -Helligkeit, ist -1 wenn kein Fehler vorhanden
h	<i>H</i> -Helligkeit
dh	Fehler der H -Helligkeit, ist -1 wenn kein Fehler vorhanden
k	K_s -Helligkeit
dk	Fehler der K_s -Helligkeit, ist -1 wenn kein Fehler vorhanden
PhQ	Photometrische Qualität der $J-H-K_s$ Helligkeiten (z.B. AAA)
	"A" gültige Messung aller drei Helligkeiten, S/N ≥ 10 ,
	wobei rdf=,,1", ,,2" oder ,,3"
	"B" gültige Messung aller drei Helligkeiten, S/N \geq 7,
	wobei rdf= $,1^{\circ}, 2^{\circ}$ oder 3°
	"C" gültige Messung aller drei Helligkeiten, S/N ≥ 5 ,
	wobei rdf= $,1^{\circ}, 2^{\circ}$ oder 3°
	"E" schlechtere photometrische Qualität als bei "A", "B" und
	"C", mit rdf="2"
	"U" obere Grenze der Helligkeit, Quelle nicht gefunden rdf="0"
	oder obere Grenze der Helligkeit, Quelle nicht aufgelöst, rdf="6"
rdf	gibt Ursprung der Helligkeiten und deren Fehler $(z.B. 226)$ an
	"0" Quelle nicht nachgewiesen, 95% Konfidenz obere Grenze der
	Helligkeit bei einer 4"-Blende
	$,2^{\circ}$ der häufigste Typ, Helligkeit aus 1.3 sec Messung mit
	Profilanpassungsmessung und ungesätigten Pixeln
	"6" ähnlich "0", aber die Quelle ist nicht ausreichend
	gut aufgelöst in den 3 Bändern
ccf	Kontaminations- oder Problem-Marker für die Photometrie-
	oder Positionsmessungen
	"0" Quelle ist ungestört, oder nicht nachgewiesen
	"c" die photmetrische Messung ist durch eine nahen Stern gestört
g	Marker für Problem mit ausdehnten Quellen des XSC (Radius>10")
	"0" Quelle nicht innerhalb des Radiuses einer XSC-Quelle, oder
	Fortastaura nächata Soita

Fortsetzung von voheriger Seite

Spalte	Bedeutung
	entspricht exakt einer XSC-Quelle
	"1" Quelle aufgelöst bei 2MASS und equivalent mit einer XSC-Quelle
	XSC-Referenznummer ist bei XSC key zu finden
	"2" diese Quelle fällt innerhalb des Radiuses einer XSC-Quelle,
	die photometrischen Eigenschaften konnen dadurch beeinflusst sein
opt.D	Abstand in Bogensekunden zur optischen Quelle
С	Katalogverweis der optischen Quellen, "0" keine opt. Quelle gefunden
	"T" optische Quelle innerhalb von 5", entstammt Tycho 2
	"U" optische Quelle innerhalb von 5", entstammt USNO A2.0
В	bei C=,,U" handelt es sich um die USNO A2.0 B -Helligkeit
	bei C=,,0" verwendet ich zu Kennzeichnung -1
VR	bei C=,,U" handelt es sich um die USNO A2.0 R -Helligkeit
	bei C=,,0" verwendet ich zu Kennzeichnung -1
XSC key	Verweis auf die Identifikationsnummer der XSC-Quelle
PSC No.	einmalig vergebene PSC-Katalognummer

Tabelle A.7: PSC-Informationen des BSC-AGN-Datensatzes

BSC	α	δ	Dist	Ori	j	dj	h	dh	k	dk	PhQ	rdf	ccf	g	opt.D	С	В	VR	Nu	XSC key	PSC No.
BSC2044	190.718249	13.257450	2.1607	32.6080	12.582	0.092	11.893	0.121	11.291	0.065	EEE	222	000	1	0.8	U	12.50	11.30	1	1861629	939455458
BSC2045	184.739566	47.303986	6.6923	-113.3289	11.069	0.085	10.542	0.114	10.068	0.076	EEE	222	000	2	-1	0	-1	-1	0	-1	977682175
BSC2046	180.790007	44.531319	0.7487	1.3750	11.645	0.055	10.810	0.062	10.018	0.037	EEA	222	000	2	2.8	U	12.90	10.80	1	-1	979362532
BSC2047	198.365052	36.593071	4.5453	-130.3753	11.026	-1	11.065	0.046	11.114	0.063	UEE	622	0cc	2	-1	0	-1	-1	0	-1	382671348
BSC2048	182.635755	39.405849	2.2614	24.5899	10.262	0.023	9.436	0.023	8.519	0.018	EEA	222	000	2	1.1	U	12.80	10.90	1	-1	206642474
BSC2049	155.877379	19.865082	1.3585	-17.5515	11.265	0.034	10.528	0.042	9.923	0.026	EEE	222	000	2	4.0	U	12.40	10.90	1	-1	158088622
BSC2050	166.697778	72.568649	1.0571	-82.5835	11.131	0.042	10.391	0.056	9.619	0.025	EEE	222	000	2	0.8	U	8.80	8.00	1	-1	569612967
BSC2051	175.057971	24.697060	2.6909	-26.1270	12.192	0.041	11.295	0.037	11.000	0.039	EEE	222	000	1	0.8	U	9.20	8.20	2	447932	189695667
BSC2052	184.610446	29.812927	1.2953	-110.9413	12.746	0.080	11.748	0.066	10.759	0.035	EAA	222	000	1	1.7	U	10.20	9.30	2	2431953	1230014819
BSC2053	14.972005	31.827019	1.2907	-10.6936	13.696	0.064	13.025	0.076	12.420	0.055	AAA	222	000	1	0.5	U	11.30	10.30	1	1665828	824152430
BSC2054	352.194385	3.511410	1.2906	-33.5120	12.588	0.081	12.067	0.101	11.336	0.058	EEE	222	000	1	1.2	U	9.30	8.40	1	2175478	1097921447
BSC2055	345.815064	8.873858	0.9175	14.3653	11.399	0.040	10.682	0.051	9.762	0.038	EEE	222	000	2	1.6	U	9.30	8.30	1	-1	1135935801
BSC2056	214.498140	25.136843	5.0073	43.4538	11.777	0.021	10.872	0.024	10.135	0.021	EAA	222	000	1	0.5	U	9.30	8.20	2	1287719	612944935
BSC2057	25.990715	2.349864	1.8529	35.3868	12.832	0.076	12.023	0.085	11.453	0.050	EEE	222	000	1	0.2	U	10.30	9.20	1	2277748	1149399843
BSC2058	21.885504	19.178833	1.8907	65.0073	12.657	0.038	12.043	0.063	11.360	0.037	LEE	222	000	1	0.5	U	10.60	9.50	1	1005379	824043099
BSC2059	189.421007	26.707672	1.5043	-05.0932	14.052	0.092	14.030	0.106	13.514	0.098	AAA	222	000	1	0.3	U	12.10	11.20	1	2093715	1054053558
BSC2060	180.8000000	2.079038	3.3013	0.7441	14.106	0.075	13.607	0.114	12.931	0.000	ABA	222	000	1	0.5	U	13.50	11.70	1	1720545	800493478
DSC2001	1 501200	02.007910	2.3430	-9.9274	11.940	0.033	11.041	0.031	10.091	0.020		222	000	1	0.3	U	9.80	10.00	1	120/10/	000202071
BSC2002	0.610004	20.202934	0.0005	1.9695	12.015	0.027	12 010	0.041	10.092	0.023	FDA	222	000	1	0.1	U U	12.00	12.30	1	1062216	1000875202
BSC2003	208 582104	22 020016	1 0002	50 2171	12 724	0.098	10.019	0.112	11.667	0.004	EDA	222	000	1	1.1	U	10.40	9.50	1	417997	176050574
DSC2004	208.383194	62 612262	1.0903	12 7000	12.734	0.031	12.137	0.032	12 472	0.027	FFF	222	000	1	0.4	U	12 70	12.10	2	1420122	687202442
BSC2005	208.931888	4 667100	1.0474	14 6824	13.098	0.094	12.949	0.108	12.472	0.000	ELL	222	000	1	0.4	U	12 50	11.10	1	2174400	1007708230
BSC2067	141 513637	12 734406	1 3709	51.0680	12 860	0.000	12.000	0.035	11 305	0.005	EAA	222	000	1	0.2	U U	12.30	13.20	1	2174433	136306362
BSC2068	245 053176	40 151684	2 1/21	60 2678	14 279	0.023	13 557	0.040	13 141	0.025		222	000	0	0.2	U	12.40	11.60	1	580370	226412745
BSC2069	335 937556	11 835830	1 0074	11 2958	13 611	0.045	12 911	0.005	12 278	0.040		222	000	1	0.7	U U	13.40	12 30	1	2160418	1091534670
BSC2070	139 608330	16 305473	2 2223	39 9845	12 712	0.028	11 729	0.030	10 701	0.023	AAA	222	000	1	0.2	Ŭ	11 90	10.40	1	296354	136154695
BSC2071	349.736054	0.243850	1.1124	-39.3661	12.003	0.044	11.187	0.048	10.155	0.032	AEA	222	000	1	0.6	Ŭ	13.90	12.00	1	2191307	1104055170
BSC2072	116.871171	60.933552	3.0152	137.2158	13.335	0.053	12.842	0.081	12.207	0.044	EEA	222	000	1	0.8	Ũ	10.70	9.10	1	1575096	760619126
BSC2073	233.968321	57.902660	0.9643	53.3219	13.609	0.036	12.906	0.041	12.181	0.030	AAA	222	000	0	1.0	Ũ	12.90	11.80	1	1396883	671140150
BSC2074	239.264118	63.840981	0.7898	47.6855	13.596	-1	13.393	0.081	12.545	-1	UAU	626	0c0	1	0.1	Ŭ	11.40	10.30	1	1452580	695525053
BSC2075	195.997878	53.791687	2.0749	-2.2732	14.462	0.057	13.638	0.057	13.038	0.044	AAA	222	000	0	0.1	U	14.60	13.20	1	1331028	636390457
BSC2076	208.264256	69.308189	1.5652	-109.3837	12.191	0.023	11.221	0.022	10.396	0.019	AAA	222	000	1	0.4	U	11.50	10.00	1	1243967	582393614
BSC2077	42.336180	19.304007	3.5508	46.9180	13.176	0.051	12.383	0.050	11.823	0.037	EEA	222	000	1	0.4	U	11.60	10.50	1	163643	89330894
BSC2078	239.790107	35.029877	1.5890	11.4496	13.576	0.047	12.753	0.054	12.017	0.039	AAA	222	000	1	0.4	U	12.30	10.10	1	2020734	1026619943
BSC2079	242.852802	58.850349	0.6180	65.4975	14.099	0.080	13.258	0.070	12.565	0.041	AAA	222	000	0	0.4	U	12.80	11.90	1	1362887	648684915
BSC2080	219.091997	58.794289	1.7190	-33.0787	12.852	0.059	11.931	0.054	10.904	0.034	AAA	222	000	1	0.6	U	10.80	9.70	1	2006906	1020524039
BSC2081	140.929374	22.908171	0.8089	-59.0965	15.330	0.150	12.323	-1	11.666	-1	BUU	200	c00	2	3.6	U	12.30	10.10	1	-1	1267992791
BSC2082	174.807965	33.930813	1.9321	4.2822	14.518	0.090	13.754	0.072	12.906	0.048	AAA	222	000	1	0.5	U	12.80	10.20	1	2092978	1053899636
BSC2083	207.470155	2.079218	2.2549	14.3178	13.671	0.059	12.845	0.058	11.882	0.038	AAA	222	000	0	0.2	U	14.00	13.10	1	1743798	866975302
BSC2084	344.887153	24.918295	0.2660	121.2117	13.928	0.039	13.087	0.047	12.334	0.031	AAA	222	000	0	0.2	U	14.00	13.40	1	2521383	1284243806
BSC2085	45.033422	16.504045	1.5918	11.0895	13.758	0.051	12.949	0.054	12.243	0.037	AAA	222	000	0	0.5	U	15.00	13.50	1	1627753	800837315
BSC2086	213.563279	26.747631	1.2566	67.9567	13.402	0.047	12.798	0.060	12.498	0.054	AAA	222	000	1	0.8	U	11.90	10.70	1	2022064	1026913626
BSC2087	149.982669	13.043833	1.1802	-47.3993	14.110	0.100	13.190	0.089	12.603	0.064	AAA	222	000	1	0.2	U	12.40	9.80	1	1851840	933662880
BSC2088	141.303532	52.286179	0.5387	-63.0161	13.872	0.049	13.159	0.056	12.252	0.035	AAA	222	000	0	2.0	U	13.30	12.60	1	1609379	783924768
BSC2089	165.257419	11.046890	2.1590	33.3254	14.050	0.067	13.251	0.083	12.368	0.039	AAA	222	000	0	0.2	U	13.90	12.70	1	1683214	838492458
BSC2090	12.895887	29.401262	2.5486	3.7891	13.145	0.045	12.455	0.055	11.945	0.033	EAA	222	000	1	0.6	U	11.70	10.30	1	219117	109669258
BSC2091	226.005034	10.437765	0.9616	7.1915	13.036	0.034	12.258	0.035	11.472	0.029	AAA	222	000	1	0.1	U	12.90	12.90	1	2453735	1243313466
BSC2092	244.440145	6.064845	2.0588	77.6006	13.852	0.044	13.114	0.046	12.501	0.039	AAA	222	000	0	0.3	U	14.30	13.40	1	2034713	1030917207
BSC2093	129.956856	48.783741	2.5080	10.3139	14.275	0.070	13.542	0.072	13.068	0.052	AAA	222	000	0	1.2	U	13.70	12.30	1	1199798	2005267
BSC2094	346.011123	22.624283	2.6034	21.7019	13.332	0.058	12.648	0.067	12.042	0.049	EEE	222	000	1	0.7	U	12.00	10.40	1	154029	83905367
BSC2095	355.277408	9.636023	2.9198	23.2471	14.257 12.610	0.074	13.564	0.090	13.064	0.061	AAA	222	000	1	0.7	U	13.90	12.80	1	1964410	1001306067
BSC2096	104.802230	4 540101	0.7007	12.0522	13.010	0.071	12.909	0.085	12.109	0.049	AAA	222	000	1	0.5	U	14.20	11.10	1	1823842	911287970
BSC2097	340.702133	4.549191	1.1100	12.9523	14.033	0.063	13.285	0.076	12.345	0.044	AAA	222	000	1	0.5	U	14.30	12.80	1	2220218	1122382000
																		Fort	setz	ung nach	iste Seite

Fortsetz	zung von v	vorherige	r Seite																		
BSC	α	δ	Dist	Ori	j	dj	h	dh	k	dk	PhQ	rdf	ccf	g	opt.D	С	В	VR	Nu	XSC key	PSC No.
BSC2098	158.660859	39.641151	1.2345	83.3182	14.141	0.036	13.435	0.046	12.666	0.034	AAA	222	000	0	0.3	U	12.50	12.10	1	525548	210769500
BSC2099	226.937545	51.452877	2.3926	55.4403	13.604	0.042	12.716	0.046	12.324	0.045	AAA	222	000	1	0.3	U	12.30	10.70	1	1413735	680379276
BSC2100	172.769843	68.864677	1.8484	-6.3302	13.794	0.046	13.102	0.057	12.569	0.037	AAA	222	000	0	0.3	U	14.40	12.90	1	1242379	582002623
BSC2101	52.717389	5.640488	3.3428	-34.4403	14.240	0.044	13.510	0.045	12.674	0.039	AAA	222	000	0	0.4	U	15.70	14.80	1	1597638	778391851
BSC2102	190.544185	33.284084	0.7045	4.4835	13.520	0.034	12.804	0.037	11.942	0.026	AAA	222	000	0	0.2	U	15.00	14.00	1	-1	1063953761
BSC2103	156.380373	51.676338	1.8195	-3.0734	14.293	0.040	13.474	0.047	12.718	0.032	AAA	222	000	0	0.1	U	14.90	13.60	1	1028641	479191884
BSC2104	217.769929	28.287237	1.5201	46.1339	13.223	0.041	12.392	0.041	11.806	0.035	AAA	222	000	1	0.8	U	11.70	10.20	1	1260564	586673408
BSC2105	154.326115	29.242811	2.1617	-11.3132	14.205	0.048	13.394	0.047	12.701	0.036	AAA	222	000	0	0.0	U	13.50	12.00	1	482829	200573828
BSC2106	170.446385	11.738667	0.5166	67.0756	13.555	0.040	12.853	0.044	12.100	0.033	AAA	222	000	0	0.3	U	14.30	13.40	1	2404864	1215893220
BSC2107	144.254351	1.095477	1.8409	21.1217	15.000	0.091	14.240	0.080	13.506	0.068	AAA	222	000	0	0.5	U	14.00	13.60	1	1594714	776632175
BSC2108	266.269163	48.044476	3.7085	-32.9023	14.081	0.052	13.333	0.069	12.776	0.046	AAA	222	000	1	0.4	U	13.00	12.00	1	2085151	1051862608
BSC2109	208.526691	23.430326	1.1763	3.9126	13.720	0.040	13.017	0.053	12.394	0.036	AAA	222	000	0	0.5	U	14.40	13.20	1	1881303	955979882
BSC2110	186.304650	32.233788	0.4162	150.7874	14.568	0.154	13.993	0.147	13.307	0.113	EBB	222	000	1	0.4	U	14.60	11.20	1	1867362	941329433
BSC2111	176.292736	30.788078	2.2051	19.3289	14.073	0.030	13.242	0.030	12.484	0.027	AAA	222	000	0	0.1	U	15.00	14.30	1	496779	203542678
BSC2112	127.892905	28.783000	1.2925	81.3050	14.840	0.038	14.018	0.036	13.369	0.030	AAA	222	000	0	0.2	U	10.10	10.20	1	446450	189433470
BSC2113	13.393313	12.093312	0.9855	20.5066	12.454	0.027	11.489	0.039	10.354	0.022	AAA	222	000	2	0.6	U	12.30	12.70	1	-1	1207742187
BSC2115 PSC2116	122 062088	21.002747	1.0918	11 0255	14.700	0.037	13.872	0.037	13.021	0.035		222	000	0	0.2	U	14.80	14.00	1	-1	1337909340
BSC2110 BSC2117	100 372581	27 367233	1.2304	135 0213	14.174	0.000	14 042	0.002	12.032	0.035		222	000	0	0.2	U	14.80 15.70	13.80	1	2131/30	979122091
BSC2117	175 317362	21 030365	1.1720	52 5003	14.009	0.074	13.816	0.045	12 051	0.005		222	000	0	0.5	U U	13.40	13.00	1	667053	260138571
BSC2110	188 015156	20 158182	1 9882	76 7693	13 857	0.056	13.068	0.045	12.301 12.145	0.040		222	000	1	0.4	U U	13.50	11 90	1	2120431	1067824077
BSC2120	12 978156	17 432901	2 2964	78 8638	14 841	0.038	14 274	0.051	13 340	0.038		222	000	0	0.3	U U	15.80	15 30	1	_1	418888813
BSC2120	131 926871	34 751228	1 5535	-23 8425	13 409	0.025	12 784	0.027	12 015	0.000		222	000	ő	0.3	U U	14.00	13.40	1	-1	190208819
BSC2121 BSC2122	133.663465	17.689577	1.5446	17.0040	13.590	0.026	12.817	0.030	12.171	0.022	AAA	222	000	ő	0.5	Ŭ	14.30	13.50	1	284740	131281487
BSC2122	176.320433	79.680878	1.1607	0.5189	15.128	0.094	12.586	-1	12.115	-1	AUU	200	c00	2	2.2	Ŭ	11.20	9.30	1	-1	846701196
BSC2124	25.021627	11.491545	2.8868	27,4338	14.345	0.039	13.575	0.042	12.624	0.030	AAA	222	000	0	0.5	Ũ	15.60	15.50	1	-1	1138125329
BSC2125	222.786538	27.157505	3.0459	-7.7784	13.644	0.030	12.882	0.027	12.054	0.025	AAA	222	000	ŏ	0.6	Ŭ	14.00	13.10	1	1449138	694625518
BSC2126	344.151896	5.421413	1.2774	-31.7007	14.552	0.035	13.719	0.040	12.753	0.026	AAA	222	000	0	0.3	Ū	15.00	14.90	1	-1	1123245370
BSC2127	164.505040	20.487209	2.5622	143.0519	14.416	0.057	13.540	0.054	12.874	0.043	AAA	222	000	1	0.8	U	12.80	12.10	1	350407	151697122
BSC2128	246.360591	57.457710	1.3716	56.5527	14.343	0.070	13.589	0.076	12.952	0.052	AAA	222	000	1	0.5	U	13.00	11.90	1	1363927	648860350
BSC2129	195.745085	16.407707	1.7698	9.5472	14.469	0.034	13.808	0.038	12.966	0.027	AAA	222	000	0	0.2	U	15.10	14.90	1	361748	153872163
BSC2130	253.534011	39.425919	1.4961	29.0208	14.936	0.050	14.343	0.061	13.657	0.052	AAA	222	000	0	0.1	U	14.70	14.30	1	628999	241577016
BSC2131	176.979505	9.041364	0.9520	-17.0016	14.429	0.057	13.744	0.053	12.996	0.056	AAA	222	000	0	0.2	U	16.00	14.40	1	1684185	838762229
BSC2132	40.561031	5.509999	1.2226	35.4103	14.063	0.064	13.143	0.074	12.219	0.038	AAA	222	000	0	0.3	U	14.10	13.00	1	2238113	1127197103
BSC2133	332.974552	18.697222	1.6508	52.7427	13.999	0.047	13.296	0.060	12.552	0.043	AAA	222	000	0	0.2	U	15.10	13.20	1	1706021	849956542
BSC2134	239.578153	25.856916	1.2475	-152.0817	14.665	0.042	13.825	0.045	12.999	0.043	AAA	222	000	0	0.5	U	15.70	15.10	1	1471831	701864935
BSC2135	215.373977	47.790157	0.7880	44.1687	13.433	0.028	12.468	0.030	11.446	0.017	AAA	222	000	0	0.4	U	14.60	14.00	1	-1	277663116
BSC2136	240.537176	26.329374	1.0757	-103.6275	14.410	0.038	13.577	0.041	12.925	0.038	AAA	222	000	0	0.5	U	14.20	14.00	1	1449452	694695034
BSC2137	146.476640	42.644440	0.9864	-4.1103	14.462	0.062	13.628	0.065	12.872	0.045	AAA	222	000	0	0.2	U	14.20	12.50	1	1774060	880657974
BSC2138	198.594587	34.494022	1.9348	40.1322	14.930	0.047	14.232	0.056	13.462	0.037	AAA	222	000	0	0.3	U	16.20	15.40	1	2113458	1064028959
BSC2139	161.115616	27.301727	5.2559	6.9673	14.405	0.045	13.707	0.063	12.999	0.042	AAA	222	000	0	0.3	U	14.90	13.90	1	1760301	874301503
BSC2140	206.533770	29.636271	2.5762	1.3920	14.863	0.054	14.046	0.056	13.366	0.046	AAA	222	000	0	0.1	U	14.70	14.00	1	1337424	638439897
BSC2141	164.482158	19.256449	3.4198	-19.8693	15.237	0.057	14.579	0.068	13.886	0.055	AAA	222	000	0	1.3	U	14.60	14.00	1	350388	151695221
BSC2142	220.531135	35.439701	2.1082	92.0745	12.936	0.021	12.001	0.022	11.060	0.017	AAA	222	000	0	0.2	U	13.80	12.60	1	1-	563086497
BSC2143	229.840227	59.139931	1.3485	-56.1229	14.234	0.035	13.360	0.035	12.520	0.026	AAA	222	000	0	0.2	U	14.80	14.30	1	1312288	620825634
BSC2144	30.109779	2.009515	1.4379	29.3039	14.018	0.064	13.314	0.093	12.203	0.042	AAA	222	000	1	0.4	U	13.20	11.20	1	21/081/	1098212044
BSC2145 DSC2146	103.203242	30.800083	0.7478	-20.8685	14.296	0.027	13.532	0.023	12.031	0.022	AAA	222	000	0	0.1	U	14.70	14.70	1	-1	203933314
BSC2140 BSC2147	103.373093	30.062012	1.2003 3.2107	90.0732	14 346	0.022	12.500	0.032	12.292	0.019		222	000	0	0.0	U U	15.60	13.90	1	-1 564105	001219010 018001003
BSC2147	5 00/880	4 706252	1.8670	35 0767	14.340	0.054	13.649	0.038	12.011	0.031		222	000	0	0.4	U	14.80	14.30	1	2270112	11/5075015
BSC2140	0.904009 160 183017	4.700203 33.016464	2.2006	7 5055	14.430	0.037	13.048	0.072	12.044	0.045		222	000	0	0.7	U U	15.40	14.30	1	652426	252872530
BSC2149	230 572365	16 807871	1 6511	36 0120	15 227	0.059	14 395	0.040	13 539	0.057		222	000	0	0.8	U U	16.00	15.60	1	_1	1081015820
BSC2150	342 414794	11 008060	2 4521	64 6890	14 437	0.032	13 760	0.042	12.866	0.042		222	000	0	0.1	Ŭ	15 10	14 70	1	-1	1091638058
BSC2152	359.997055	8.565021	1.6630	123.7747	14.156	0.055	13.450	0.066	12.647	0.044	AAA	222	000	0	0.4	ŭ	14.90	13.90	î	2309157	1168611458
BSC2152	55 309721	4 890332	1 9978	84 3950	14 327	0.047	13 454	0.046	12.404	0.033	AAA	222	000	ő	0.1	Ŭ	15.50	15.00	1	1609438	783946747
	50.000.21	1.000002	1.00.0	01.0000	- 110-1	0.011	20.101	0.010		0.000			000	ÿ	0.1	ç	10.00	- 10:00	-		

BSC a d Dest Ori d h dest k dest	Fortsetz	zung von	vorherige	r Seite																		
BKC1014 217 277379 1.286061 2.8621 7.01 2.576 0.043 1.117 0.027 A.A. 222 000 0 0.0 0 1.10 1.5.0 1 277037 1.2870230 BKC115 201/17 1.1478 201/17 201/17 201/17 201/17 201/17 201/17 201/17 201/17 201/17 201/17 201/17 201/17 201/17 201/17 201/17 201/17 201/17 201/17 201/	BSC	α	δ	Dist	Ori	j	dj	h	dh	k	dk	PhQ	rdf	ccf	g	opt.D	С	В	VR	Nu	XSC key	PSC No.
BISC116 29.813288 J.e800 72.8533 J.S.24 0.034 12.310 0.034 12.340 0.03 12.310 0.034 1.4.840 1.5.01 1.4.1717 J.S.2536 J.S.256 J.S.256 <thj.s.256< th=""> <thj.s.256< th=""> J.S.256<</thj.s.256<></thj.s.256<>	BSC2154	217.277379	1.285061	2.2621	-11.0998	13.039	0.037	12.151	0.040	11.117	0.027	AAA	222	000	0	0.6	U	14.10	13.50	1	2477213	1259029691
BSC2167 244.178170 24.07840 0.022 -7.37803 1.8.19 0.038 1.2.930 0.4.4 1.2.88 0.026 A.A.A 2.22 000 0 0 1.0 U 1.4.208 1.1.2023818 SC2120 0.161722 2.5.92671 1.4.208 0.071 1.3.616 0.031 1.3.616 0.031 1.3.616 0.031 1.3.616 0.031 1.3.616 0.031 1.3.616 0.031 1.3.616 0.031 1.3.616 0.031 1.3.616 0.031 1.3.616 0.031 1.3.616 0.031 1.3.616 0.031 1.3.616 0.031 1.3.616 0.031 1.3.616 0.041 1.3.616 0.041 1.3.616 0.041 1.0.1077 0.017711043	BSC2155	239.178486	29.813208	1.8609	72.8533	13.824	0.034	13.045	0.043	12.310	0.031	AAA	222	000	0	0.3	U	14.90	13.50	1	1471671	701846300
BSC1216 125.106600 97.10755 1.178 2.24175 3.1478 0.408 0.037 1.348.1 0.044 1.248.8 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 0.047 1.348.4 0.037 0.047 1.348.4 0.037 0.047 1.348.4 0.037 0.047 1.348.4 0.037 0.047 1.348.4 0.037 0.047 1.348.4 0.037 0.047 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.348.4 0.037 1.338.4 0.038 1.348.4	BSC2157	244.178170	4.207880	0.6922	-57.8903	13.819	0.038	12.903	0.044	11.888	0.026	AAA	222	000	0	0.1	U	14.20	13.50	1	2233007	1125293818
BSC2109 25.64871 57.070124 2.486 68.0171 13.680 0.081 12.8464 0.083 12.484 0.083 12.484 0.083 12.482 000 0 0 0 0 1 1.480 1 1.34568 6377111261 BSC2103 24.74133 0.07111361	BSC2158	128.105608	37.126755	1.4278	22.6175	14.593	0.036	13.811	0.044	12.868	0.027	AAA	222	000	0	0.2	U	16.30	15.30	1	-1	795510498
BSC2160 92:721044 4.047042 0.8482 66.0910 12.864 0.032 12.312 0.032 12.433 0.033 AAA 222 000 0 0.4 U 1.80 1.40 1 1.010732323 BSC2101 01.01732 22.3087 0.7349 66.532 1.441 0.044 1.3.890 0.060 1.0.11 0.033 0.4.2 U 1.6.0 1.6.0 1.6.0 1.6.0 1.6.0 1.6.0 1.6.0 1.6.0 1.6.0 1.6.0 1.6.0 1.6.0 1.6.0 1.6.0 1.6.0 1.6.0 1.6.0 1.6.0 1.6.0 1.6.20 1.6.0 1.6.20 1.6.0 1.6.0 1.6.20 1.6.0 1.6.20	BSC2159	258.548371	57.976124	2.4586	88.9172	14.459	0.037	13.586	0.038	12.864	0.035	AAA	222	000	0	0.5	U	15.30	14.80	1	1334558	637311261
BKSC2108 16.4612733 22.092032 1.6310 2.26673 1.4610 1.6310 2.26673 1.6310 1.6310 2.26673 1.6310 1.6310 1.6310 1.117102	BSC2160	322.721044	4.047042	0.8342	65.0910	13.564	0.023	13.231	0.024	13.143	0.034	AAA	222	000	0	0.4	U	14.80	14.40	1	-1	1047725243
BSC2102 17.2.62139 40.82716 0.8010 2.2.6041 14.477 0.447 0.444 13.407 0.42 AAA 222 000 0 0.3 U 14.70 13.407 1111 0.012 AAA 222 000 0 0.3 U 14.50 11.61 11.623 34.61	BSC2161	164.612723	22.592632	1.6510	26.6753	14.634	0.039	13.854	0.044	13.122	0.038	AAA	222	000	0	0.3	U	16.20	14.50	1	350462	151704633
BSC2128 43.651442 15.428975 0.7340 65.0520 14.481 0.040 13.080 0.066 13.084 0.066 13.084 0.026 13.084 0.026 13.085 0.056 14.000 14.000 14.087 0.038 13.11 0.028 14.02 0.038 14.042 20.00 0 0.5 U 15.00 1 202046234 BSC2167 12.24748 76.0128 3.031 0.037 14.180 0.038 14.042 20.00 0 0.5 U 15.00 1 220046234 BSC2167 12.2475 0.038 0.037 14.180 0.038 13.283 0.037 14.042 0.038 14.042 20.00 0 0.1 14.00	BSC2162	172.621390	49.582718	0.8501	22.6054	14.477	0.046	13.629	0.052	13.107	0.042	AAA	222	000	0	0.3	U	14.70	13.50	1	1171623	561258557
BSC2164 21.501212 22.306233 1.5708 11.401 0.043 14.007 0.044 13.17 0.044 13.17 0.028 AAA 222 000 0 0.1 1.5.70 1 0.687.397 227.17 0.039 AAA 222 000 0 0.1 1.4.20 1.4.20 1.4.10 1 -1 250.6970 BSC2108 17.05588 3.5.688 3.8.691 3.5.618 3.7.846 1.2.97 0.031 1.2.24 0.024 AAA 222 000 0 0.5 U 1.6.00 1.5.00 1 -1 250.69708 BSC2108 17.8.1759 19.15552 1.716 5.9.17 12.087 0.031 13.403 0.031 1.4.01 0.034 AAA 222 000 0 0.5 U 1.4.00 1.4.017 1.4.001 1.4.017 1.0.001 1.4.017 1.0.001 1.4.017 1.0.001 1.4.01 1.4.01 1.4.017 1.0.001 1.0.017 1.0.001 1.0.017 1.0.017 1.0.017 1.0.001 1.0.017 1.0.017 1.0.017 <t< td=""><td>BSC2163</td><td>43.651442</td><td>15.428975</td><td>0.7349</td><td>65.0520</td><td>14.481</td><td>0.044</td><td>13.890</td><td>0.060</td><td>13.018</td><td>0.046</td><td>AAA</td><td>222</td><td>000</td><td>0</td><td>0.5</td><td>U</td><td>15.40</td><td>15.10</td><td>1</td><td>1626770</td><td>800700695</td></t<>	BSC2163	43.651442	15.428975	0.7349	65.0520	14.481	0.044	13.890	0.060	13.018	0.046	AAA	222	000	0	0.5	U	15.40	15.10	1	1626770	800700695
BSC2165 19.232540 25.84479 25.84479 25.84479 25.84479 14.384 0.034 13.372 0.032 12.374 0.032 AAA 222 0.000 0.00 0. 0.00 0.0. 0.00 0.0. 0.00 0.0. 0.00 0.0. 0.00 0.0. 0.00 0.0. 0.00 0.0. 0.00 0.0. 0.00 0.0. 0.00 0.0. 0.00 0.0. 0.00 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. <th< td=""><td>BSC2164</td><td>211.591212</td><td>22.396233</td><td>1.3798</td><td>114.0013</td><td>14.801</td><td>0.043</td><td>14.037</td><td>0.044</td><td>13.111</td><td>0.028</td><td>AAA</td><td>222</td><td>000</td><td>0</td><td>0.2</td><td>U</td><td>15.50</td><td>14.90</td><td>1</td><td>682937</td><td>267159841</td></th<>	BSC2164	211.591212	22.396233	1.3798	114.0013	14.801	0.043	14.037	0.044	13.111	0.028	AAA	222	000	0	0.2	U	15.50	14.90	1	682937	267159841
BSC2166 232.281.606 352.285.408 15.296 10.277 14.861 0.037 14.861 0.038 1AAA 222 000 0 0.5 U 11.0 1 12094623 BSC2167 12.74488 7.604128 3.5187 13.1057 0.033 AAA 222 000 0 0.5 U 14.00 1 14.10 1 12556707 BSC2169 171.817298 1.0917 1.0397 0.033 1.4.80 0.034 AAA 222 000 0 0.5 U 14.60 13.00 1 485905 222285012 BSC2177 12.04327073 21.3884 0.022 11.779 0.033 AAA 222 000 0 0.5 U 14.00 1 10100275 1 11.01 1 101002275 11.011 1 10100275 1 14.434 0.022 13.780 0.023 AAA 222 000 0 0.1 15.30 1 -1 121707 8564280 101011 1 14.574 1010177777 17.168 1	BSC2165	19.225261	25.824579	2.5351	-11.4799	14.354	0.034	13.372	0.032	12.374	0.022	AAA	222	000	0	0.5	U	16.00	15.30	1	225074	111433580
BSC2167 12.2.744.34. 76.0412 3.5018 -8.7846 12.976 0.019 1.0.0 A.A.A 222 000 0 0.1 U 1.400 1 -1 129367017 DSC2160 11.17129 10.15552 1.7112 10.15552 1.711 10.1552 1.711 11.1552 1.711 10.1552 1.711 10.1552 1.711 10.2552 1.711 10.2552 1.711 10.2552 1.711 10.2552 1.711 10.2552 1.711 10.2552 1.711 10.2552 1.711 10.2552 1.711 10.2552 1.711 </td <td>BSC2166</td> <td>232.281069</td> <td>56.268539</td> <td>1.3296</td> <td>101.2572</td> <td>14.861</td> <td>0.037</td> <td>14.180</td> <td>0.036</td> <td>13.233</td> <td>0.033</td> <td>AAA</td> <td>222</td> <td>000</td> <td>0</td> <td>0.5</td> <td>U</td> <td>15.70</td> <td>15.70</td> <td>1</td> <td>-1</td> <td>620946234</td>	BSC2166	232.281069	56.268539	1.3296	101.2572	14.861	0.037	14.180	0.036	13.233	0.033	AAA	222	000	0	0.5	U	15.70	15.70	1	-1	620946234
BSC2168 170.28788 23.855843 31.894 -17.912 14.246 0.029 13.497 0.037 12.797 0.04 AAA 222 000 0 0.5 U 16.30 15.801 1 -1 88561815 BSC2117 171729 10.3553 17.81 55.9167 13.497 0.032 17.77 0.032 AAA 222 000 0 0.5 U 14.30 15.00 1 -1 10100275 BSC2171 204.32777 24.34273 25.83783 29.83043 1.6138 0.0483 1.4638 0.057 13.788 0.064 13.406 0.052 AAA 222 000 0 0.3 U 16.10 14.06 1 102717 20.2075285 20.20717 21.425460 40.3087 1.107173 0.03 12.717 0.03 1.044 AAA 222 000 0 2.1 1.1 4.20851 3.207754 21.425440 4.30707 2.407 3.308 1.819 0.028 2.AA 22.000 0 0<.2 U 1.40 1.41	BSC2167	122.744384	76.045128	3.5018	-8.7846	12.976	0.019	12.088	0.021	10.917	0.019	AAA	222	000	0	0.1	U	14.20	14.10	1	-1	1295367017
BSC2170 10.15552 1.7615 55.0167 13.403 0.038 12.407 0.034 A.A. 222 000 0 0.6 U 1.460 13.20 1 488005 20228812 BSC2170 10.555873 29.558733 29.589733 0.614 0.06 0.07 A.A. 222 000 0 0.8 U 1.460 1.300 1 177177 8.7663287 BSC2177 25.588753 29.589933 1.613 0.048 1.320 0.03 12.409 0.022 A.A. 222 000 0 0.3 U 1.4.00 1.4.11	BSC2168	170.285788	53.855843	3.1894	-17.9132	14.246	0.029	13.262	0.037	12.204	0.026	AAA	222	000	0	0.3	U	16.30	15.80	1	-1	859549185
BSC217 Dis_11372 dis_112988 0.0907 -1 A.DU 266 c00 0 0.8 U 1.86682 9.1122209 BSC2171 Dis_13777 24.8126 2.073 33.4583 1.218 0.22 1.010 0.022 A.A.A 222 000 0 0.5 U 1.20 1.510 1 1.100731 677201529 BSC2177 23.500674 31.023 0.0483 1.4164 0.042 A.A.A 222 000 0 0.3 U 1.4.50 1.4.10 1.4.20 1.5.00 1.4.20 1.5.00 1.4.20 1.5.00 1.4.20 1.5.00 1.4.20 1.5.00 1.4.20 1.5.00 1.4.20 1.5.00 1.4.20 1.5.00 1.4.20 1.5.01 1.4.20 1.5.01 1.4.20 1.5.01 1.4.20 1.5.01 1.4.20 1.5.01 1.4.20 1.5.01 1.4.20 1.5.01 1.4.20 1.5.01 1.4.20 1.5.01 1.4.20 1.5.01 1.4.20 1.5.01 1.4.20 1.5.01 1.4.20 1.5.01 1.4.20 1.5.01 1.4.20 1.5.01<	BSC2169	171.817929	19.155552	1.7615	55.9167	13.997	0.033	13.403	0.036	12.737	0.034	AAA	222	000	0	0.5	U	14.60	13.20	1	488905	202288012
hst 217 204.32797 224.384216 2.6735 35.4688 12.789 0.022 1.779 0.0420 0.0430 0.047 A.A.A 222 000 0 0.4 14.30 1.1 111022075 BSC2172 12.530801 1.110142 0.223 -3.54222 0.000 0.047 A.A.A 222 000 0 0.4 14.40 14.00 1 140077 BSC2171 256 008074 31.203851 1.1021 42.0488 13.816 0.022 1.A.A 222 000 0 0.1 1.5.0 1 -1 577469393 BSC2177 12.648791 80.17403 0.248 13.713 0.024 13.170 0.023 A.A.A 222 000 0 0.2 1.4.00 1.4.01 1 1.20009 57.5415 1.3.31 0.541 1.4.05 0.635 12.766 0.632 A.A.A 222 000 0 0.5 1.4.10 1.4.10 1.4.1111415197 85.6216 3.33681 1.4.11 1.4.10 1.4.10 1.4.111141115197 85.6218 3.348816	BSC2170	169.513372	45.112988	0.9907	-104.2200	14.618	0.108	13.187	-1	12.697	-1	AUU	266	c00	0	0.8	U	13.80	13.10	1	1866825	941222092
BSC2172 173 13 538578 20 0.042 1.4 10.042 1.4 12.005 0.047 MAAA 222 000 0 0.4 U 14.50 13.00 1 1721779 856630280 BSC2175 245.046988 17.407673 0.7168 -22.0729 13.346 0.032 13.447 0.024 AAA 222 000 0 0.1 U 15.30 15.20 1 -1 232975410 BSC2177 12.454.046988 17.407673 0.7168 -22.0729 13.346 0.032 13.418 0.024 AAA 222 000 0 0.2 U 14.60 1.4.50 1 -1 232975410 BSC2177 15.246179 28.85718 8.372650 2.7573 2.4161 14.360 0.036 12.237 0.036 AAA 222 000 0 0.4 1.404 1 -1 1239868871 BSC2178 8.372640 0.57174 0.146 1.4300 0.32 1.4AA 222 000 0 0.4 1.404 1 -	BSC2171	204.327973	24.384216	2.6735	35.4583	12.789	0.022	11.779	0.032	10.490	0.023	AAA	222	000	0	0.5	U	14.20	13.50	1	-1	1011026275
ISSC2171 225.883783 29.8839943 1.6.10 60.4883 14.908 0.057 13.975 0.064 13.406 0.052 A.A.A 222 000 0 0.3 U 16.10 14.00 1 1.1 1 1.2075329 ISSC2176 214.253460 44.9350077 3.207 0.224 1.3.170 0.028 1.4.0.4 222 000 0 0.2 U 1.4.60 1.4.10 1 -1 28267754 ISSC2177 124.253460 44.9350077 3.207 0.333 1.2.868 0.038 1.8.10 0.4.4 2.2 000 0 0.2 U 1.4.60 1.4.007 1.5.80 1 -1 282645716 S.2.5756 2.4.6161 1.3.00 0.035 1.2.60 0.032 A.A.A 222 000 0 0.7 U 1.4.00 1.4.01 1.4.02 1.4.01 1.4.02 1.4.01 1.4.02 1.4.01 1.4.01 1.4.01 1.4.01 1.4.01 1.4.01 1.4.01 1.4.01 1.4.01 1.4.01 1.4.01 1.4.01 1.4.01 1.4.01<	BSC2172	173.593601	4.191042	0.9223	-35.4522	14.643	0.062	13.788	0.070	12.906	0.047	AAA	222	000	0	0.4	U	14.50	13.00	1	1721779	856630280
BSC2174 250.08074 31.201857 1.1921 -42.0485 13.962 0.029 13.00 0.03 0 0.3 0 1.4 1 -1 207768255 BSC2177 214.253914 40.397003 3.4496 -12.4423 14.073 0.032 12.419 0.024 AAA 222 000 0 0.2 0 1.4 1.4 1 -1 257768255 BSC2177 214.2539714 40.397003 3.4494 0.034 1.5 0.033 1.2.91 0.034 AAA 222 000 0 0.4 U 1.4.90 1.4.40 1 2377400 BSC2170 236.687118 8.372565 2.5763 2.6763 2.6763 2.6763 2.4.6161 1.4.360 0.034 1.3.79 0.037 1.2.60 0.022 AAA 222 000 0 0.4 U 1.5.0 1 -1 1.045535 1.057353 1.04151375 1.0315 1.0150 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <td>BSC2173</td> <td>225.883783</td> <td>29.839943</td> <td>1.6136</td> <td>60.4883</td> <td>14.908</td> <td>0.057</td> <td>13.978</td> <td>0.064</td> <td>13.406</td> <td>0.052</td> <td>AAA</td> <td>222</td> <td>000</td> <td>0</td> <td>0.3</td> <td>U</td> <td>16.10</td> <td>14.60</td> <td>1</td> <td>1409731</td> <td>679201529</td>	BSC2173	225.883783	29.839943	1.6136	60.4883	14.908	0.057	13.978	0.064	13.406	0.052	AAA	222	000	0	0.3	U	16.10	14.60	1	1409731	679201529
BSC2175 24b.04080 Ir.4076.33 0.1108 -29.6729 14.346 0.032 12.419 0.022 AAA 222 0000 0 0.1 0 1.5.20 1 -1 57708939 BSC2177 162.648791 80.197403 0.649 113.810 0.13 13.810 0.13 13.810 0.13 13.810 0.13 12.868 0.028 1A.AA 222 0000 0 0.1 14.60 14.70 1 -1 57708 24.613197 BSC2170 238.685718 8.37205 5.373340 0.5125 64.0942 1.3.380 0.036 1.3.790 0.037 12.669 0.023 AAA 222 000 0 0.7 U 14.00 14.90 1 24.356 55.303340 0.5125 64.0942 1.438 0.041 12.478 0.042 AAA 222 000 0 0.7 U 14.40 1.2436 1.2436 1.2436 1.2436 1.2436 1.2436 1.2436 1.2436 1.2436 1.2436 1.2436 1.2436 1.2436 1.2436	BSC2174	259.008074	31.203857	1.1921	-42.0485	13.962	0.029	13.020	0.030	12.039	0.022	AAA	222	000	0	0.3	U	14.80	14.10	1	-1	206758285
BSC2176 214.254400 44.935007 3.4297 -12.4442 14.073 0.026 13.170 0.028 12.237 0.024 AAAA 222 000 0 0.2 U 14.60 14.70 1 -1 8222175 BSC2178 137.541607 48.228243 1.2705 57.8415 14.931 0.033 12.276 0.032 AAA 222 000 0 0.5 U 14.60 14.70 1 -1 1034523906 BSC2178 137.541607 48.228243 1.2705 57.8415 14.388 0.034 13.579 0.035 12.276 0.032 AAA 222 000 0 0.7 U 14.40 14.40 1 12.4362 14.16507 1 12.4362 14.400 1 14.40 1 14.40 1 14.40 1 14.40 1 14.40 14.40 1 14.40 14.40 1 14.40 1 14.40 1 14.40 1 14.40 1 1 14.40 1 1 14.77 14.00 1 14.	BSC2175	245.046980	17.407673	0.7168	-29.6729	14.346	0.032	13.541	0.032	12.419	0.022	AAA	222	000	0	0.1	U	15.30	15.20	1	-1	577408939
BSC2117 162.648791 80.197403 0.8649 113.8120 13.713 0.033 12.868 0.038 11.819 0.023 AAA 222 000 0 0.2 0 14.40 1 1 1 1 1230648577 BSC2178 13.7541607 42.284516 2.5763 24.6161 14.400 0.034 13.655 0.035 12.726 0.032 AAA 222 000 0 0.5 0 1.440 1 1.23094 575222136 BSC2182 243.485216 65.71949 1.4105 48.3021 13.165 0.034 12.478 0.048 1.4.41 0.032 AAA 222 000 0 0.1 1.4.00 12.400 1.24386 5522135 1.500 1 124386 5522135 1.500 1 6521147 2.438898 18.237789 2.1983 0.484 1.4.40 0.053 13.232 0.404 AAA 222 000 0 0.1 U 1.5.00 1 652105 1.501 1 -1 15757134 45244571 852133 1.886165 </td <td>BSC2176</td> <td>214.253460</td> <td>44.935097</td> <td>3.4297</td> <td>-12.4442</td> <td>14.073</td> <td>0.026</td> <td>13.170</td> <td>0.028</td> <td>12.237</td> <td>0.024</td> <td>AAA</td> <td>222</td> <td>000</td> <td>0</td> <td>0.2</td> <td>U</td> <td>14.90</td> <td>14.50</td> <td>1</td> <td>-1</td> <td>282975410</td>	BSC2176	214.253460	44.935097	3.4297	-12.4442	14.073	0.026	13.170	0.028	12.237	0.024	AAA	222	000	0	0.2	U	14.90	14.50	1	-1	282975410
BSC2178 137.541697 48.22845 1.2705 57.5416 14.403 0.043 1.2.977 0.036 A.A.A 222 000 0 0.4 0 1.4.00 1 12309845718 57.805346 BSC2179 238.85718 8.372565 2.5.763 24.1661 14.308 0.034 13.579 0.037 12.609 0.023 A.A.A 222 000 0 0.1 1.4.10 1.4.10 1.4.13655 56.205778 BSC2181 20.608790 66.21574 0.614 1.1.646 0.4.00 0.031 1.3.490 0.051 1.3.414 0.0367 1.3.402 0.046 A.A. 222 000 0 0.1 1.4.40 1.1.23396 52.3121 2.4.386 53.031 2.3.3907773 2.3.3907773 BSC2181 167.332268 71.709312 0.578 -2.4.8076 0.550 1 2.655550 3.3.3907773 3.3.3668 0.4.4 A.A. 222 000 0 0.1 1.4.10 1.5.00 1 2.655550 3.3.3907773 3.3.3668 1.3.39168 0.4.4 A.A 222	BSC2177	162.648791	80.197403	0.8649	113.8120	13.713	0.033	12.868	0.038	11.819	0.023	AAA	222	000	0	0.2	U	14.60	14.70	1	-1	852452906
BSC2149 238.685718 8.37295 2.5763 24.6161 14.360 0.036 13.659 0.032 AAAA 222 000 0 0.5 U 15.10 15.40 1 -1 101418919 BSC2180 239.89642 25.360340 0.6512 64.0492 14.389 0.031 13.679 0.037 12.609 0.032 AAA 222 000 0 0.4 U 15.40 14.40 1 1243888 65229378 13.852 0.046 AAA 222 000 0 0.4 U 15.40 14.04 1 252316 13.552 13.568 0.041 13.920 0.045 12.917 0.032 AAA 222 000 0 0.1 U 16.50 14.60 1 652310 2523497743 13.933 15.232 0.045 AAA 222 000 0 0.1 U 15.50 1 -1 1537134 155734 13.686 0.654 AAA 222 000 0 0.4 U 14.01 1.50 1 -1 1537134 <td>BSC2178</td> <td>137.541697</td> <td>48.228245</td> <td>1.2705</td> <td>57.5415</td> <td>14.931</td> <td>0.054</td> <td>14.053</td> <td>0.053</td> <td>12.917</td> <td>0.036</td> <td>AAA</td> <td>222</td> <td>000</td> <td>0</td> <td>0.4</td> <td>U</td> <td>14.90</td> <td>14.40</td> <td>1</td> <td>1230094</td> <td>578083487</td>	BSC2178	137.541697	48.228245	1.2705	57.5415	14.931	0.054	14.053	0.053	12.917	0.036	AAA	222	000	0	0.4	U	14.90	14.40	1	1230094	578083487
BSC2181 139.980042 55.300340 0.512 14.398 0.034 13.399 0.051 12.609 0.023 AAA 222 000 0 0.7 U 14.90 14.90 1 1243586 58229736 BSC2182 243.488216 65.719429 1.196743 14.669 0.040 13.990 0.051 12.2009 0 0 0.7 U 14.40 12.250 1 1995065 15500431 BSC2183 23.763428 1.3649 0.084 14.414 0.032 AAA 222 000 0 0.2 U 15.00 1 265310 252845772 BSC2185 16.67332286 16.6827 1.4806 0.046 14.441 0.057 13.680 0.654 AAA 222 000 0 0.3 U 15.00 1 -1 757371394 BSC2185 13.3168 1.0342 -2.0.1906 13.3168 0.041 13.180 0.048 AAA 222 000 0 0.4 U 14.70 14.01 1 1 193994444	BSC2179	238.685718	8.372595	2.5763	24.6161	14.360	0.036	13.655	0.035	12.726	0.032	AAA	222	000	0	0.5	U	15.10	15.40	1	-1	1014158197
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BSC2180	139.980642	55.360340	0.5125	64.0942	14.398	0.034	13.579	0.037	12.609	0.023	AAA	222	000	0	0.7	U	14.90	14.90	1	-1	562099789
BSC2182 243.482/16 b5.19429 1.4195 443.60023 AAA 222 000 1 0.7 U 14.40 12.50 1 1990561 101000431 BSC2184 231.493898 18.337789 2.1933 61.6822 14.896 0.046 14.401 0.053 13.232 0.040 AAA 222 000 0 0.2 U 15.50 1 -1 575371394 BSC2184 126.543 10.302 -20.1906 14.281 0.030 15.56 0.037 12.568 0.025 AAA 222 000 0 0.4 U 14.00 1 -1 138767994 BSC2185 131.188764 76.885994 2.5718 -52.1435 15.66 0.070 14.290 0.025 AAA 222 000 0 4.4 14.70 13.30 1 124.09 14.701 1.303 14.221 0.043 14.80 14.70 1.30 1 14.701 1.30 1 14.701 1.303 1 14.01 1.73 1.73 1.73773 2.343 2.2	BSC2181	206.087090	66.621574	0.6741	-119.6743	14.669	0.040	13.990	0.051	13.230	0.046	AAA	222	000	0	0.4	U	15.40	14.40	1	1243586	582325136
BSC2184 144.390482 3.6.04428 1.3.0449 -10.8270 14.792 0.031 1.2.917 0.032 AAA 222 000 0 0 1.0.00 1.6.00 1 0.26530 1.33067743 BSC2184 167.332266 71.709312 0.5763 -24.8076 15.348 0.068 1.4.40 0.057 13.668 0.044 AAA 222 000 0 0.1 0 15.00 1 -1 1333670794 BSC2186 146.719065 13.331658 1.0324 1.4.800 0.33 12.569 0.025 AAA 222 000 0 0.4 U 14.70 14.00 1 -1 1383670794 BSC2185 13.188764 76.885994 2.5718 50.5621 21.9778 14.250 0.031 1.586 0.048 AAA 222 000 0 0.4 U 14.70 1 -1 133064356 BSC2192 230.39364 14.04121 1.2454 -20.9386 14.550 0.031 13.586 0.027 AAA 222 000 0 <t< td=""><td>BSC2182</td><td>243.488216</td><td>65.719429</td><td>1.4195</td><td>48.3021</td><td>13.165</td><td>0.034</td><td>12.478</td><td>0.048</td><td>11.414</td><td>0.032</td><td>AAA</td><td>222</td><td>000</td><td>1</td><td>0.7</td><td>U</td><td>14.40</td><td>12.50</td><td>1</td><td>1995065</td><td>1015000431</td></t<>	BSC2182	243.488216	65.719429	1.4195	48.3021	13.165	0.034	12.478	0.048	11.414	0.032	AAA	222	000	1	0.7	U	14.40	12.50	1	1995065	1015000431
BSC2184 231.439389 16.337/89 2.1933 0.10822 14.849 0.005 13.432 0.000 AAA 222 000 0 0.2 0 15.30 15.00 1 253307/043 BSC2186 146.719065 13.331658 10.322 -20.1906 14.281 0.030 13.566 0.057 13.668 0.64 AAA 222 000 0 0.1 15.10 1 -1 138767094 BSC2187 13.188 10.332 -52.1435 15.566 0.070 14.229 0.073 13.188 0.048 AAA 222 000 0 0.4 U 14.70 13.00 1 21.9278 13.188 0.043 13.180 0.048 AAA 222 000 0 0.4 U 14.70 13.01 1 -1 133964429 BSC2190 236.83041 0.4321 1.4259 0.073 13.364 0.044 AAA 222 000 0 0.2 U 15.30 1 -1 1339643643 BSC2191 236.884041 0.045781 </td <td>BSC2183</td> <td>144.369082</td> <td>32.703428</td> <td>1.3649</td> <td>-10.8276</td> <td>14.792</td> <td>0.051</td> <td>13.822</td> <td>0.045</td> <td>12.917</td> <td>0.032</td> <td>AAA</td> <td>222</td> <td>000</td> <td>0</td> <td>0.1</td> <td>U</td> <td>15.30</td> <td>14.60</td> <td>1</td> <td>052310</td> <td>252845772</td>	BSC2183	144.369082	32.703428	1.3649	-10.8276	14.792	0.051	13.822	0.045	12.917	0.032	AAA	222	000	0	0.1	U	15.30	14.60	1	052310	252845772
BSC2180 101.332280 11.09312 0.3103 -24.8010 10.348 0.000 13.440 0.000 13.600 0.000 14.741 0.000 13.400 1.04710 10.0 10.10 10.300 1 -1 133767994 BSC2187 216.584393 19.831165 1.3669 -28.3552 13.861 0.030 13.150 0.025 AAA 222 000 0 0.4 U 14.70 13.00 1 12420 581919444 BSC2188 343.033618 14.913739 2.6521 21.9278 14.222 0.043 13.386 0.027 12.474 0.022 AAA 222 000 0 0.2 U 15.40 14.70 1.30 1 1.1 104964356 BSC2191 236.884041 10.414212 1.2454 -20.9386 14.350 0.031 13.364 0.031 13.447 0.04 AAA 222 000 0 0.2 U 15.30 1 -1 133964364 BSC2192 146.884064 10.085737 1.56261 1.611 1.661	BSC2184	231.493898	18.237789	2.1933	01.0822	14.890	0.046	14.041	0.053	13.232	0.040	AAA	222	000	0	0.2	U	15.30	15.00	1	2000300	1339077043
BSC2180 140.19005 1.0522 -20.1900 14.281 0.030 12.039 0.025 AAA 222 000 0 0.4 U 14.70 13.00 1 -1 1099804429 BSC2187 126.84393 19.831034 12.5118 0.031 12.138 0.042 AAA 222 000 0 0.4 U 14.70 13.00 1 -1 1099804429 BSC2188 13.188764 76.885994 2.5718 -52.1455 15.066 0.070 14.259 0.022 AAA 222 000 0 0.4 U 14.70 13.00 17875695 BSC2190 230.39364 22.462177 1.0640 38.0923 14.600 0.031 13.364 0.021 12.44 0.022 AAA 222 000 0 0.2 U 15.00 15.30 0.01 13.364 0.021 12.444 0.022 AAA 222 000 0 0.4 U 14.60 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 <td>DSC2180</td> <td>107.332280</td> <td>12 221659</td> <td>1.0200</td> <td>-24.6070</td> <td>14.991</td> <td>0.008</td> <td>12 556</td> <td>0.037</td> <td>13.008</td> <td>0.034</td> <td>AAA</td> <td>222</td> <td>000</td> <td>0</td> <td>1.1</td> <td>U</td> <td>15.70</td> <td>15.50</td> <td>1</td> <td>-1</td> <td>128767004</td>	DSC2180	107.332280	12 221659	1.0200	-24.6070	14.991	0.008	12 556	0.037	13.008	0.034	AAA	222	000	0	1.1	U	15.70	15.50	1	-1	128767004
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DSC2180	140.719003 016 0E4202	10.001165	1.0522	-20.1900	14.201	0.030	12.000	0.035	12.309	0.025	AAA	222	000	0	0.3	U	14.70	14.00	1	-1	1000804420
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BSC2187	131 188764	76 885004	2 5718	-20.3332	15.056	0.034	14 250	0.039	12.193	0.025		222	000	0	0.4	U	14.70	13.30	1	1949109	581010644
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BSC2180	343 033618	14 013730	2.6521	21 0278	14 222	0.043	13 103	0.075	11 085	0.040		222	000	0	0.4	U	15.40	14 70	1	1242102	783175605
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BSC2109	230 309364	22 462177	1.0640	38 0923	14.600	0.040	13 586	0.043	12 474	0.022		222	000	0	0.2	U U	15.40 15.60	15.50	1	-1	1339064356
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BSC2191	236 884041	10 414212	1 2454	-20.9386	14.350	0.031	13 364	0.021	12.309	0.022		222	000	ő	0.2	Ŭ.	15.00	15.30	1	-1	1019633387
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BSC2191	146 888405	10.085781	3 6838	60 5444	15 150	0.068	14 207	0.072	13 047	0.044		222	000	ő	0.4	Ŭ.	14.60	14.80	1	1794489	888280054
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BSC2192	7 307073	13 267738	0.8576	-2 4120	13 580	0.028	13.062	0.039	12 111	0.022	AAA	222	000	ő	0.1	Ŭ	15.30	15.30	1	-1	1234419019
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BSC2194	47 236287	11 054265	1 6416	77 5511	13 624	0.028	12 803	0.032	11 750	0.025	AAA	222	000	ŏ	0.4	Ŭ	14.80	14 70	1	-1	846330760
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BSC2195	208.648686	18.088194	1.5142	-8.3162	15.004	0.049	14.231	0.048	13.142	0.031	AAA	222	000	ŏ	0.1	Ŭ	15.40	15.60	1	-1	1058075537
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BSC2196	253.964069	21.767124	2.8532	21.9501	14.731	0.035	13.949	0.039	12.875	0.034	AAA	222	000	õ	0.1	Ũ	15.60	15.50	1	-1	1338152775
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BSC2197	169.626210	40.431622	0.1947	-145.7394	14.660	0.054	13.798	0.057	12.763	0.035	AAA	222	000	õ	1.5	Ũ	14.80	14.30	1	-1	543414461
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BSC2198	13.717202	25.427546	2.1999	10.1037	13.891	0.029	13.174	0.031	12.239	0.021	AAA	222	000	õ	0.2	Ũ	14.90	14.00	1	-1	109738038
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BSC2199	197.445826	8.330068	0.7557	-178.0282	14.156	0.028	13.470	0.033	12.425	0.029	AAA	222	000	0	0.3	Ū	15.50	15.40	1	-1	942957215
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BSC2200	120.383191	47.604465	2.1025	-9.4554	14.336	0.036	13.595	0.034	12.530	0.023	AAA	222	000	õ	0.1	Ũ	15.10	15.20	1	587935	226052426
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BSC2201	187.277897	2.052387	1.5949	-2.5469	11.766	0.025	11.047	0.026	9.976	0.021	AAA	222	000	0	0.1	U	0.00	0.10	1	-1	855626518
BSC2203 29.959368 0.394651 2.8265 51.9151 14.066 0.041 13.088 0.035 12.014 0.024 AAA 222 000 1 0.6 U 15.30 13.40 1 2176792 1098207781 BSC2204 211.317581 25.926155 2.1737 6.9295 14.410 0.034 13.379 0.026 12.486 0.021 AAA 222 000 0 0.2 U 15.60 15.50 1 -1 21980221 BSC2205 255.69448 32.788795 1.8675 27.1214 14.495 0.029 13.546 0.021 AAA 222 000 0 0.2 U 15.60 1 -1 21980271 BSC2206 290.106542 25.56615 2.9351 51.8264 14.877 0.043 14.070 0.053 12.961 0.032 AAA 222 000 0 0.3 U 15.70 1 -1 193170073 BSC2207 39.418574 18.328363 2.2616 21.3280 15.102 0.050 13.317 0.	BSC2202	192.382245	52.510868	2.4738	30.8092	15.236	0.050	14.614	0.070	13.626	0.035	AAA	222	000	0	0.2	U	16.00	16.40	1	-1	515803991
BSC2204 211.317581 25.926155 2.1737 6.9295 14.410 0.034 13.379 0.026 12.168 0.022 AAA 222 000 0 0.2 U 15.60 15.50 1 -1 219380221 BSC2205 255.629448 32.788795 1.8675 27.1214 14.495 0.029 13.545 0.026 12.496 0.021 AAA 222 000 0 0.1 U 15.70 15.60 1 -1 214975058 BSC2206 290.106542 25.56615 2.9351 51.8264 14.877 0.043 14.070 0.053 12.961 0.032 AAA 222 000 0 0.3 U 15.70 15.60 1 -1 105317073 BSC2207 39.418574 18.328363 2.2616 21.3280 15.102 0.050 14.311 0.600 13.285 0.400 AAA 222 000 0 0.2 U 16.60 1 -1 458571950 BSC2208 244.242853 64.45055 2.172 60.9424 15.273	BSC2203	29.959368	0.394651	2.8265	51.9151	14.066	0.041	13.088	0.035	12.014	0.024	AAA	222	000	1	0.6	U	15.30	13.40	1	2176792	1098207781
BSC2205 255.629448 32.788795 1.8675 27.1214 14.495 0.029 13.545 0.026 12.496 0.021 AAA 222 000 0 0.1 U 15.70 15.60 1 -1 214975058 BSC2206 209.106542 25.56615 2.9351 51.8264 14.877 0.043 14.070 0.053 12.961 0.032 AAA 222 000 0 0.3 U 15.70 15.50 1 -1 1053170073 BSC2207 39.418574 18.328363 2.2616 21.3280 15.102 0.050 14.311 0.060 13.285 0.040 AAA 222 000 0 0.0 U 15.00 1 -1 45877073 BSC2208 244.2853 64.645035 2.317 -60.9424 15.273 0.049 13.285 0.040 AAA 222 000 0 0.2 U 16.60 1 -1 45865311 BSC2209 148.515822 66.139114 1.023 -37.5653 15.690 0.077 15.189 0.110	BSC2204	211.317581	25.926155	2.1737	6.9295	14.410	0.034	13.379	0.026	12.168	0.022	AAA	222	000	0	0.2	U	15.60	15.50	1	-1	219380221
BSC2206 209.106542 25.256615 2.9351 51.8264 14.877 0.043 14.070 0.053 12.961 0.032 AAA 222 000 0 15.70 15.50 1 -1 1053170073 BSC2207 39.418574 18.328363 2.2616 21.3280 15.102 0.050 14.311 0.060 13.285 0.040 AAA 222 000 0 0.0 U 15.90 1 -1 1053170073 BSC2208 244.24253 64.645035 2.317 -60.9924 15.273 0.049 14.307 0.051 13.285 0.040 AAA 222 000 0 0.0 U 15.90 1 -1 458671950 BSC2209 148.515822 66.139114 1.0223 -37.563 15.690 0.077 15.189 0.110 14.329 0.60 ABA 222 000 0 2 U 16.00 1 -1 636635611 BSC209 148.515822 66.139114 1.0223 -37.5653 15.690 0.077 15.189 <t< td=""><td>BSC2205</td><td>255.629448</td><td>32.788795</td><td>1.8675</td><td>27.1214</td><td>14.495</td><td>0.029</td><td>13.545</td><td>0.026</td><td>12.496</td><td>0.021</td><td>AAA</td><td>222</td><td>000</td><td>0</td><td>0.1</td><td>U</td><td>15.70</td><td>15.60</td><td>1</td><td>-1</td><td>214975058</td></t<>	BSC2205	255.629448	32.788795	1.8675	27.1214	14.495	0.029	13.545	0.026	12.496	0.021	AAA	222	000	0	0.1	U	15.70	15.60	1	-1	214975058
BSC2207 39.418574 18.328363 2.2616 21.3280 15.102 0.050 14.311 0.060 13.285 0.040 AAA 222 000 0 0.0 U 15.90 16.00 1 -1 458571950 BSC2208 244.242853 64.645035 2.3172 -60.9242 15.273 0.049 14.307 0.051 13.285 0.040 AAA 222 000 0 0.2 U 16.60 16.10 1 -1 636635611 BSC2209 148.515822 66.139114 1.0223 -37.5653 15.690 0.077 15.189 0.110 14.329 0.060 ABA 222 000 0 0.2 U 16.70 16.40 1 1216604 574671313	BSC2206	209.106542	25.256615	2.9351	51.8264	14.877	0.043	14.070	0.053	12.961	0.032	AAA	222	000	0	0.3	U	15.70	15.50	1	-1	1053170073
BSC2208 244.242853 64.645035 2.3172 -60.9242 15.273 0.049 14.307 0.051 13.285 0.040 AAA 222 000 0 0.2 U 16.60 16.10 1 -1 636635611 BSC2209 148.515822 66.139114 1.0223 -37.5653 15.690 0.077 15.189 0.110 14.329 0.060 ABA 222 000 0 0.2 U 16.70 16.40 1 1216604 574671313	BSC2207	39.418574	18.328363	2.2616	21.3280	15.102	0.050	14.311	0.060	13.285	0.040	AAA	222	000	0	0.0	U	15.90	16.00	1	-1	458571950
BSC2209 148.515822 66.139114 1.0223 -37.5653 15.690 0.077 15.189 0.110 14.329 0.060 ABA 222 000 0 0.2 U 16.70 16.40 1 1216604 574671313	BSC2208	244.242853	64.645035	2.3172	-60.9242	15.273	0.049	14.307	0.051	13.285	0.040	AAA	222	000	0	0.2	U	16.60	16.10	1	-1	636635611
	BSC2209	148.515822	66.139114	1.0223	-37.5653	15.690	0.077	15.189	0.110	14.329	0.060	ABA	222	000	0	0.2	U	16.70	16.40	1	1216604	574671313

Fortsetz	zung von	vorherige	r Seite																		
BSC	α	δ	Dist	Ori	j	dj	h	dh	k	dk	PhQ	rdf	ccf	g	opt.D	С	В	VR	Nu	XSC key	PSC No.
BSC2210	174.408525	10.658400	0.7195	70.5036	15.354	0.061	14.542	0.080	13.464	0.050	AAA	222	000	0	0.2	U	15.80	15.20	1	-1	863791848
BSC2211	41.920221	19.682741	2.0123	21.8554	15.291	0.046	14.592	0.056	13.512	0.043	AAA	222	000	0	0.1	U	16.40	16.30	1	-1	89295511
BSC2212	178.455326	11.475174	1.3097	61.4260	14.876	0.042	14.199	0.059	13.082	0.041	AAA	222	000	0	0.2	U	15.20	15.10	1	-1	1215997363
BSC2213	169.786169	21.321659	1.1261	91.4104	13.592	0.024	12.684	0.024	11.540	0.018	AAA	222	000	0	0.1	U	14.40	14.30	1	-1	202144540
BSC2214	180.948731	52.130470	2.8319	18.0803	14.933	0.042	14.257	0.051	13.348	0.036	AAA	222	000	0	0.2	U	16.30	16.10	1	-1	517523654
BSC2215	151.424494	43.544579	1.5025	-8.9222	14.842	0.040	13.872	0.038	12.697	0.025	AAA	222	000	0	0.1	U	15.80	16.10	1	-1	219977351
BSC2216	152.685477	0.725363	0.3758	35.2867	14.851	0.052	14.027	0.047	13.055	0.035	AAA	222	000	0	0.1	U	16.60	15.90	1	2645219	1335080330
BSC2217	198.073965	35.255859	2.1857	16.8082	14.199	0.028	13.626	0.036	12.659	0.027	AAA	222	000	0	0.1	U	15.70	14.50	1	-1	190462975
BSC2218	153.728809	0.560398	1.4485	8.4318	14.919	0.073	14.166	0.080	13.081	0.053	AAA	222	000	0	0.5	U	15.40	14.20	1	1639368	808612718
BSC2219	141.477993	19.901413	0.2724	71.4318	14.351	0.033	13.389	0.037	12.200	0.026	AAA	222	000	0	0.7	U	14.60	14.90	1	-1	1268041143
BSC2220	187.370730	43.22/30/	0.9629	57.2220	15.216	0.047	14.534	0.065	13.402	0.045	AAA	222	000	0	0.2	U	15.00	16.50	1	-1	088981370
BSC2221	240.530183	33.987300	2.1041	20.8100	14.910	0.037	13.825	0.040	12.831	0.028	AAA	222	000	0	0.2	U	16.20	14.90	1	-1	205401252
BSC2222	221.061140	0.001884	0.8750	-20.0981	10.033	0.070	14.741	0.008	13.518	0.048 0.027		222	000	0	0.1	U	15.30	16.00	1	-1 622245	970204317
DSC2223	260 826650	24 200442	0.0504	-10.8102	14.773	0.030	12.943	0.035	12.707	0.027		222	000	0	0.1	U	15.80	14.70	1	022243	239290293
DSC2224	257 555012	22 724042	1 5720	-99.8087	14.418	0.028	12 401	0.031	12.000	0.027		222	000	0	0.1	U	15.50	14.70	2	-1	200909290
BSC2225	216 555480	10 022550	1 1803	00.1241	14.445	0.030	13.401 13.777	0.053	12.209	0.021		222	000	0	0.9	U	15.00	15.50	1	2181105	1000781126
BSC2220	160 200883	28 468102	1.1005	30,0000	15 339	0.040	14 304	0.032	13 377	0.025		222	000	0	0.1	U	16.20	16.10	1	2101135	246513576
BSC2228	232 706200	20.434721	0.1687	-91 4671	14 509	0.030	13 600	0.047	12 652	0.028		222	000	0	0.1	U U	16.00	15.00	1	-1	1330111201
BSC2220	197 078798	3 743699	1 8039	112 2703	15 702	0.070	14 992	0.084	13 894	0.064	ΔΔΔ	222	000	ő	0.0	Ŭ	16.20	16.60	1	1870734	944632941
BSC2230	231 864089	15 683348	2 3652	29 7866	16.018	0.071	15 531	0.101	14 483	0.063	AAA	222	000	ŏ	0.4	Ŭ	16.20	16.40	1	-1	615755764
BSC2231	171 163248	42 029186	0.8886	85 5156	15 119	0.044	14 351	0.060	13 261	0.028	AAA	222	000	ő	0.4	Ŭ	15.50	16 20	1	-1	1076836362
BSC2232	149 218349	41 256161	1 4290	125 0401	14 196	0.025	13 483	0.026	12 532	0.023	AAA	222	000	ő	0.1	Ŭ	15.10	15 40	1	-1	214779088
BSC2233	220.760855	40.756969	1.6164	47.6812	15.434	0.055	14.719	0.061	13.870	0.056	AAA	222	000	ŏ	0.2	Ũ	16.80	16.40	1	624979	239924377
BSC2234	129.245432	44,433968	1.2854	1.7533	14.720	0.032	14.054	0.034	13.266	0.030	AAA	222	000	0	0.3	Ŭ	15.50	15.50	1	-1	543300782
BSC2235	224.036107	27.835783	1.8748	-14.0526	15.395	0.065	14.414	0.063	13.343	0.048	AAA	222	000	0	0.5	Ŭ	16.30	15.50	1	-1	679080773
BSC2236	247.851784	29.883795	2.6869	7.8318	15.497	0.060	14.751	0.060	13.821	0.047	AAA	222	000	0	0.1	U	16.00	15.40	1	-1	1027754294
BSC2237	134.619590	34.395527	0.8973	1.2709	15.306	0.044	14.503	0.049	13.636	0.043	AAA	222	000	0	0.1	U	16.10	16.20	1	-1	190665748
BSC2238	324.934111	2.768117	1.3168	80.3363	15.089	0.052	14.229	0.060	13.184	0.041	AAA	222	000	0	0.2	U	15.70	15.70	1	-1	1047948402
BSC2239	236.931410	20.871290	2.5429	49.7176	14.833	0.042	14.180	0.053	13.187	0.037	AAA	222	000	0	0.4	U	16.10	15.70	1	2163353	1092658272
BSC2240	221.691387	40.584942	0.8755	25.3308	14.831	0.038	14.009	0.039	12.907	0.026	AAA	222	000	0	0.1	U	15.00	14.90	1	-1	239979083
BSC2241	220.053161	61.942520	0.3005	-76.1372	15.960	0.082	14.977	0.075	13.984	0.052	AAA	222	000	0	0.3	U	16.40	16.20	1	-1	615674300
BSC2242	4.915747	26.047846	1.6410	40.6184	14.935	0.040	14.135	0.037	13.114	0.031	AAA	222	000	0	0.5	U	15.50	15.50	1	-1	1322923127
BSC2243	163.686317	48.527534	0.8921	169.6851	14.657	0.033	14.060	0.039	13.229	0.027	AAA	222	000	0	0.2	U	15.70	15.40	1	-1	494995851
BSC2244	172.789539	31.234884	1.4792	-106.3982	14.786	0.035	14.224	0.049	13.407	0.037	AAA	222	000	0	0.1	U	15.50	15.80	1	-1	180615514
BSC2245	142.158295	60.422516	2.1648	18.0910	15.441	0.046	14.733	0.057	13.717	0.041	AAA	222	000	0	0.1	U	16.80	16.20	1	-1	534018221
BSC2246	194.331478	44.493179	1.5585	22.0668	15.362	0.053	14.578	0.058	13.740	0.060	AAA	222	000	0	0.2	U	16.10	16.10	1	-1	267968167
BSC2247	166.057697	76.982826	1.2820	-23.7321	14.471	0.032	13.928	0.047	13.053	0.035	AAA	222	000	0	0.5	U	15.60	15.20	1	-1	569602769
BSC2248	216.231405	42.235477	1.8535	-22.1072	15.431	0.059	14.825	0.080	13.779	0.055	AAA	222	000	0	0.0	U	15.90	15.50	1	698678	277708699
BSC2249	151.010937	28.926476	1.3537	13.9679	14.810	0.038	14.030	0.041	12.909	0.028	AAA	222	000	0	0.1	U	15.00	15.70	1	-1	245544003
BSC2250	184.837260	6.644018	1.5953	23.3326	14.603	0.050	13.974	0.051	13.309	0.034	AAA	222	000	0	0.4	U	16.10	15.80	1	-1	864478703
BSC2251	186.424876	20.917589	2.4801	105.9052	15.428	0.053	14.815	0.067	13.903	0.047	AAA	222	000	0	0.4	U	16.10	16.00	1	-1	267072666
BSC2252	193.832055	1.736682	2.0578	-2.8366	15.227	0.054	14.471	0.047	13.433	0.039	AAA	222	000	0	0.5	U	15.80	16.10	1	-1	882102725
BSC2253	237.736401	58.935032	0.5068	-76.8623	16.219	0.110	15.530	0.110	14.395	0.089	BBA	222	000	0	0.4	U	16.40	16.50	1	-1	618773197
BSC2254	147.470591	39.034466	1.6545	87.3059	15.741	0.070	14.829	0.085	13.968	0.053	AAA	222	000	0	0.4	U	15.40	16.00	1	-1	211291019
BSC2255	176.994079	27.249849	0.6118	-152.6910	15.241	0.046	14.679	0.065	13.893	0.042	AAA	222	000	0	0.1	U	15.60	16.10	1	-1	1042667256
BSC2256	228.679465	30.847359	0.9905	10,1838	15.432	0.052	14.702	0.063	13.698	0.053	AAA	222	000	0	0.2	U	15.90	15.50	1	-1	214210040
BSC2257	182.050526 24.9810F0	31.931008	2.0504	-12.0994	15.015	0.058	14.955 14.547	0.066	14.250 12 706	0.060	AAA	222	000	0	0.2	U	15.70	16.10	1	-1 1	1122211206
DSC2208	34.201930 199 257444	0 502110	2.2034	20.9978	15.501	0.049	14.047	0.048	12.790	0.049		222	000	0	0.1	U	16.90	14.00	1	-1	271860407
DSC2209	141 054516	9.020119	2 2800	-41.0094	15.017	0.070	14.040	0.071	13.924	0.000		222	000	0	0.2	U	16.00	16.20	1	-1	011000491
BSC2200	11 020332	40.042223	0.0820	-23.7039	15.027	0.000	14.043	0.005	14 068	0.043		222	000	0	0.3	U U	16.00	16.40	1	-1	1234151280
BSC2262	210 133167	4 082686	0.6825	-118 9610	15 148	0.073	14.308	0.044	13 365	0.043		222	000	0	0.3	Ŭ.	15.20	15.80	1	-1	890107096
BSC2263	200 855160	34 516491	3 2483	65 1003	15 782	0.030	15 101	0.103	14 342	0.045	AAA	222	000	0	0.2	Ŭ	16.30	16.10	1	-1	1231226112
BSC2203	256 509205	68 960144	3 0102	33 4694	15.075	0.046	14 340	0.103	13 396	0.003		222	000	ñ	0.2	Ŭ	15.80	16.20	1	-1	663990880
0002204	200.003200	00.000144	0.0132	00.4004	10.010	0.040	14.049	0.040	10.000	0.041	ллл	444	000	0	0.3	0	10.00	10.20	-	-1	0000000

1010500	Zung von	vormerige					-									<i></i>					
BSC	α	δ	Dist	Ori	j	dj	h	dh	k	$d\mathbf{k}$	PhQ	rdf	ccf	g	$_{\rm opt.D}$	С	В	VR	Nu	XSC key	PSC No.
BSC2265	232.169203	28.424974	1.9100	3.4496	15.431	0.061	14.669	0.056	14.107	0.068	AAA	222	000	0	0.3	U	16.10	16.60	1	-1	1244174710
BSC2266	1.496849	16.163622	1.2155	31.2364	14.728	0.035	14.202	0.036	13.534	0.045	AAA	222	000	0	0.1	U	15.80	15.90	1	-1	1240444065
BSC2267	143.760537	43.519657	1.9271	-23.6639	15.272	0.037	14.409	0.041	13.430	0.038	AAA	222	000	0	0.2	U	15.50	16.20	1	-1	548905735
BSC2268	214.986318	37.653542	2.2304	38.2717	15.858	0.069	15.129	0.072	14.448	0.073	AAA	222	000	0	0.1	U	16.50	16.60	1	-1	218797622
BSC2269	7.044706	31.063349	1.1220	19.7090	14.085	0.022	13.662	0.031	13.140	0.026	AAA	222	000	0	0.1	U	15.30	15.20	1	-1	130587075
BSC2270	193.651674	5.622379	1.5648	0.9577	15.641	0.078	14.888	0.082	14.117	0.078	AAA	222	000	0	0.2	U	15.80	16.20	1	-1	870177210
BSC2271	152.627317	25.997087	1.6915	26.5545	15.895	0.082	15.302	0.101	14.662	0.084	AAA	222	000	0	0.3	U	16.10	16.20	1	-1	491757351
BSC2272	191.725160	13.219707	2.2313	64.9324	15.490	0.054	14.692	0.062	13.649	0.033	AAA	222	000	0	0.2	U	16.50	16.10	1	-1	156259572
BSC2273	236.295662	34.879761	4.1704	-6.9674	15.932	0.077	15.107	0.088	14.460	0.075	AAA	222	000	0	0.3	U	16.40	15.90	1	-1	211023797
BSC2274	27.427150	0.250461	0.7019	20.0055	15.494	0.049	14.819	0.067	14.088	0.055	AAA	222	000	0	0.4	U	16.10	16.10	1	-1	1116959112
BSC2275	245.090897	17.606661	1.0036	12.5788	15.552	0.060	14.919	0.076	14.088	0.050	AAA	222	000	0	0.1	U	15.40	15.80	1	-1	577429908
BSC2276	179.666211	62.907715	2.2788	-38.8736	15.118	0.048	14.543	0.065	13.873	0.055	AAA	222	000	0	0.5	U	15.90	16.00	1	-1	563732933
BSC2277	250.744998	39.810272	1.5080	49.5078	14.255	0.029	13.304	0.027	12.398	0.024	AAA	222	000	0	0.1	U	16.10	15.40	1	-1	235241050
BSC2278	152.614726	41.544155	1.0322	21.8688	15.364	0.056	14.701	0.067	13.964	0.059	AAA	222	000	0	0.2	U	15.60	15.80	1	-1	247686170
BSC2279	166.812699	16.467299	2.4795	59.0124	15.139	0.030	14.518	0.047	13.962	0.042	AAA	222	000	0	0.1	U	16.10	15.80	1	-1	148745861
BSC2280	262.516109	33.018024	3.0041	16.0833	15.545	0.049	14.910	0.066	14.221	0.061	AAA	222	000	0	0.1	U	16.20	16.10	1	-1	225906968
BSC2281	356.896590	27.317072	1.1805	67.1007	14.852	0.041	14.137	0.041	13.052	0.029	AAA	222	000	0	0.2	U	15.70	15.90	1	-1	1304231343
BSC2282	174.987532	65.797081	1.8637	-74.7000	14.826	0.037	14.392	0.043	13.655	0.042	AAA	222	000	0	0.1	U	15.70	15.70	1	-1	563542778
BSC2283	181.100156	43.515854	2.1139	11.1079	15.393	0.050	14.857	0.068	13.785	0.040	AAA	222	000	0	0.1	U	16.00	15.70	1	-1	576115823
BSC2284	356.653530	9.512636	2.2319	77.3281	14.646	0.038	14.387	0.057	13.546	0.048	AAA	222	000	0	0.1	U	16.20	16.30	1	-1	1179431356
BSC2285	211.925876	29.556082	1.6942	58.0986	15.533	0.056	15.001	0.072	14.477	0.084	AAA	222	000	0	0.2	U	16.20	16.40	1	-1	227542999
BSC2286	209.268545	19.318682	1.4467	29.8096	14.865	0.033	14.687	0.080	13.894	0.050	AAA	222	000	0	0.1	U	15.80	15.60	1	-1	1091830435
BSC2287	150.260658	59.737362	1.5658	16.2357	15.055	0.047	14.726	0.066	14.065	0.056	AAA	222	000	0	0.2	U	16.00	16.50	1	-1	1064734870
BSC2288	234.895077	47.591999	1.2146	80.6870	14.539	0.033	14.242	0.056	13.511	0.037	AAA	222	000	0	0.1	U	15.90	15.90	1	-1	611833166
BSC2289	175.929502	67.748764	0.8143	-123.5175	15.825	0.058	15.654	0.107	14.767	0.087	AAA	222	000	0	0.1	U	15.90	16.40	1	-1	570286233
BSC2290	248.261075	23.824577	0.9281	59.0481	14.010	0.028	13.928	0.040	13.343	0.043	AAA	222	000	0	0.1	U	15.70	15.60	1	-1	1068166057
BSC2291	343.490622	16.148230	0.9477	48.5110	14.494	0.027	13.855	0.029	13.061	0.026	AAA	222	000	0	0.0	U	14.80	14.10	1	-1	341002056
BSC2292	212.349579	26.305868	2.1248	-0.3742	14.907	0.034	14.511	0.059	13.909	0.038	AAA	222	000	0	0.3	U	15.10	15.30	1	-1	887849446
BSC2293	177.835241	54.625874	3.1862	9.0697	14.484	0.024	14.166	0.035	13.348	0.032	AAA	222	000	0	0.2	U	15.10	15.50	1	-1	562375000
BSC2294	327.022737	6.960748	1.5575	147.0607	14.596	0.031	14.150	0.037	13.377	0.037	AAA	222	000	0	0.1	U	16.00	16.10	1	-1	991972015
BSC2295	215.281463	25.639206	1.3346	31.1980	14.315	0.032	13.965	0.040	13.374	0.032	AAA	222	000	0	0.2	U	15.50	15.20	1	-1	613003712
BSC2296	259.909372	48.070114	0.6421	50.2737	13.460	0.024	13.046	0.023	12.578	0.028	AAA	222	000	0	0.1	U	14.70	14.50	1	-1	294139907
BSC2298	192.523859	26.518753	1.5512	13.0825	14.339	0.034	13.835	0.047	13.183	0.035	AAA	222	000	0	0.8	U	14.80	15.00	1	-1	932065870
BSC2299	130.351490	70.894997	2.0002	-5.9747	15.522	0.058	14.793	0.077	14.109	0.059	AAA	222	000	0	0.2	U	16.50	16.70	1	-1	547415413

Die Webabfrage des 2MASS-XSC-Katalogs gestalltet sich ähnlich der des PSC-Katalogs. Jedoch sind die möglichen verfügbaren Informationen der XSC-Quellen weitaus größer als beim PSC. Es gibt bei den XSC-Quellen jedoch keine weiteren optischen Information, wie dies beim PSC der Fall ist. Desweiteren wurde nach einem Verweis für einen Eintrag im PSC gesucht, um eine bessere Übereinstummung der Daten sicherzustellen. Das Ergebnis der Abfrage sind die anschließenden Tabellen A.9 und A.10 des XSC. Der Eintrag "-1" in einigen Feldern verwende ich stellvertretend für das Schlüssel "NULL" im 2MASS-XSC-Katalog. Die Spalteneinträge sind wie folgt:

Spalte	Bedeutung
BSC	für die Arbeit verwendete Katalognummer des AGN
α	Rektaszension als Dezimalzahl (Equinox 2000)
δ	Deklination als Dezimalzahl (Equinox 2000)
Dist	Entfernung von opt. Koordinaten in "
Ori	Orientierungswinkel der XSC-Quelle
r_{k20}	Länge der großen Halbachse der Isophotenellipse mit
	$20 \text{ mag}/\Box''$ bei Kron Photometrie
j _{k20}	J-Helligkeit der Isophotenellipse mit "rk20" Größe
dj_{k20}	Fehler der J -Helligkeit
jf	Problemmarker der <i>J</i> -Helligkeit
	"0" keine weitere andere Quelle innerhalb der Apertur
	"1" Apertur enthält problematische Pixel
	"3" Apertur enthält Pixel mit abgezogener PSC-Helligkeit
h_{k20}	H-Helligkeit der Isophotenellipse mit "rk20" Größe
dh_{k20}	Fehler der <i>H</i> -Helligkeit
hf	Problemmarker der H -Helligkeit
	"0" keine weitere andere Quelle innerhalb der Apertur
	"1" Apertur enthält problematische Pixel
	"3" Apertur enthält Pixel mit abgezogener PSC-Helligkeit
k_{k20}	K_s -Helligkeit der Isophotenellipse mit "rk20" Größe
dk_{k20}	Fehler der K_s -Helligkeit
kf	Problemmarker der K_s -Helligkeit
	"0" keine weitere andere Quelle innerhalb der Apertur
	"1" Apertur enthält problematische Pixel
	"3" Apertur enthält Pixel mit abgezogener PSC-Helligkeit
$\mathbf{j}_{\mathrm{peak}}$	J-Helligkeit des hellsten Pixels
h_{peak}	H-Helligkeit des hellsten Pixels
k_{peak}	K_s -Helligkeit des hellsten Pixels
ccf	Kontaminations- oder Problem-Marker für die Photometrie-
	oder Positionsmessungen
	"0" Quelle ist ungestört
	"Z" diese Quellen sind große Galaxien im 2MASS
	Large Galaxy Atlas
Ĵ5	J-Helligkeit mit 5" Apertur
dj ₅	Fehler der J -Helligkeit mit 5" Apertur
j ₅ f	Problemmarker der J -Helligkeit, wie bei jf
h_5	H-Helligkeit mit 5" Apertur

_ 0 _ 0.0 0 0 _ 01_	-0
Spalte	Bedeutung
dh_5	Fehler der H -Helligkeit mit 5" Apertur
h_5	Problemmarker der H -Helligkeit, wie bei hf
k_5	K_s -Helligkeit mit 5" Apertur
dk_5	Fehler der K_s -Helligkeit mit 5" Apertur
$k_5 f$	Problemmarker der K_s -Helligkeit, wie bei kf
IDcat	Galaxienname der Quelle
XSC NO	einmalig vergebene XSC-Katalognummer
PSC key	Verweis auf die Identifikationsnummer der PSC-Quelle
XSC NO PSC key	einmalig vergebene XSC-Katalognummer Verweis auf die Identifikationsnummer der PSC-Quelle

Fortsetzung von voheriger Seite

Tabelle A.9: XSC-Informationen des BSC-AGN-Datensatzes / Teil 1	
,	

BSC	α	δ	Dist	Ori	glon	glat	r _{k20}	j _{k20}	dj _{k20}	jf	h _{k20}	dh _{k20}	hf	k _{k20}	dk _{k20}	kf	j _{peak}	hpeak	kpeak
BSC2044	190.718140	13.257536	2.2689	20.1729	294.295	75.985	45.5	9.774	0.014	0	9.146	0.021	0	8.918	0.026	0	15.36	14.62	16.51
BSC2045	184.740082	47.303719	6.0755	-126.4721	138.319	68.842	63.9	6.512	0.016	3	5.841	0.016	3	5.598	0.016	3	-1	-1	-1
BSC2046	180.790359	44.531261	1.0677	59.6411	148.882	70.085	02.6	8.829	0.017	1	8.234	0.018	1	7.882	0.019	1	-1	-1	-1
BSC2047	198.364731	36.593651	4.4732	-101.0375	98.058	79.448	07.2	8.180	0.015	1	7.449	0.016	1	7.155	0.016	1	-1	-1	-1
BSC2048	182.636078	39.405762	2.5342	46.5406	155.076	75.063	88.2	8.657	0.016	3	7.937	0.016	3	7.503	0.016	3	-1	-1	-1
BSC2049	155.877533	19.864950	0.8277	7.7584	216.992	55.446	92.6	8.782	0.016	1	8.101	0.017	1	7.802	0.017	1	-1	-1	-1
BSC2050	166.697891	72.568527	0.9746	-108.0982	133.236	42.403	40.8	9.696	0.016	0	9.033	0.017	0	8.644	0.018	0	-1	-1	-1
BSC2051	175.058075	24.697039	2.4882	-19.8486	217.581	73.819	30.1	10.636	0.012	0	9.928	0.018	0	9.646	0.020	0	15.49	14.66	16.57
BSC2052	184.610352	29.812820	1.7261	-119.4305	190.682	82.270	25.6	11.198	0.019	0	10.468	0.028	0	9,930	0.025	0	15.36	14.40	17.01
BSC2053	14.972119	31.826992	1.1762	5.3271	125.026	-31.010	13.2	12.631	0.032	õ	11.932	0.050	õ	11.505	0.051	õ	16.50	15.67	18.05
BSC2054	352 194458	3 511387	1 0905	-24 3847	86 679	-53 440	19.8	11 079	0.015	Ő	10 448	0.024	Ő	10 113	0.026	õ	15.26	14 56	16.64
BSC2055	345.815308	8.873690	1.1318	75.4648	83.099	-45.467	31.8	10.299	0.017	1	9.491	0.017	1	9.010	0.018	1	-1	-1	-1
BSC2056	214 497971	25 136793	4 5063	39 9420	31 960	70 496	26.3	10.802	0.015	0	10.038	0.018	0	9 4 9 5	0.019	0	15 10	14 04	16 58
BSC2057	25 990686	2 349909	1 9328	30.0773	148 233	-57 918	17.2	11 447	0.015	ő	10.755	0.020	ő	10 440	0.032	ő	15.55	14 76	17.01
BSC2058	21.885632	19 178818	2 2743	70.8830	134 597	-42 874	16.6	11 688	0.019	ő	10.925	0.028	ő	10.538	0.022	ŏ	15.00	14.00	17.01
BSC2059	189 421570	26 707567	1 6683	-81 6868	219 967	86.906	10.0	13 381	0.015	ő	12 650	0.065	Ő	12 236	0.069	ő	17.58	16.72	18 78
BSC2060	185 850449	2 679154	3 9559	1 6825	286 393	64 647	9.6	13.069	0.036	ő	12.000	0.039	ő	12.200	0.000	ŏ	16.98	16.24	18.26
BSC2061	248 132309	82 537933	2 7023	-18 7481	115 764	31 196	37.0	10.213	0.017	ő	9.469	0.020	Ő	9 167	0.025	ő	15.42	14 65	16.45
BSC2062	1 581590	20 202940	3 7637	17 7702	108 764	-41 424	15.1	12 048	0.025	ő	11 054	0.020	ő	10.063	0.020	ŏ	-1	-1	-1
BSC2062	0.610005	3 351047	1.0002	1 0202	00.845	57 307	14.8	12.040	0.028	ő	11 491	0.024	ő	11 005	0.053	ő	16.41	15 57	17 77
BSC2064	208 583208	32 020005	1 3268	60.2658	50.833	75 223	15.4	11 812	0.020	0	11.421	0.039	0	10.759	0.034	0	16.00	15.30	17.33
BSC2065	268 051874	62 612106	0.6755	30 5449	01.818	30.217	35.9	10.735	0.013	1	10.033	0.029	3	9 756	0.034	3	16.72	15.04	17.33
DSC2005	200.351074	4 667256	1 4022	41 2042	64 701	28 621	15.2	12 277	0.021	1	11 526	0.023	1	11 222	0.039	1	16.26	15.54	17.53
BSC2000	141 512510	12 724476	1.4955	20 25/1	210.040	20.007	16.1	12.277	0.027	0	11.000	0.037	0	10.750	0.049	0	15.00	14.05	17.10
BSC2007	245.052070	12.734470	2 2000	45 2259	219.049	39.997 45 919	7.0	12.070	0.025	0	12 770	0.037	0	10.739	0.041	0	17.14	14.95	12.52
BSC2008	245.055070	11 025721	2.2090	40.2000	75 469	45.518	1.9	10.440	0.030	0	11.062	0.044	0	11.431	0.003	0	16.67	15.07	10.07
BSC2009	120 608046	16 205464	0.7098	21.1143	10.402	-37.074	14.4	12.755	0.033	0	11.902	0.030	0	11.372	0.035	0	15.07	10.65	10.14
DSC2070	240 725002	0.042785	2.0211	54.2008	213.624	59.724	21.0	12.037	0.022	0	0.059	0.029	0	0.415	0.020	0	14.00	12.04	16 55
BSC2071	349.733992	0.243785	1.1201	-30.0180	80.067	-54.740	31.2	10.736	0.015	0	9.958	0.018	0	9.420	0.018	0	14.88	13.84	10.55
BSC2072	110.870920	00.933382	2.0559	142.4249	133.989	30.213	33.0	11.021	0.025	0	10.652	0.037	0	11.000	0.045	0	16.45	15.00	10.05
BSC2075	233.908384	57.902041 C2.940700	1.0280	00.4097	91.469	47.934	9.5	10.500	0.031	3	12.510	0.041	3	11.629	0.047	3	10.42	10.08	10.20
BSC2074	239.204511	53.840790 52.701709	1.2178	97.3037	97.123	42.831	15.4	12.302	0.033	0	11.873	0.043	0	11.497	0.067	0	17.20	16.55	18.20
BSC2075	195.997005	00.200044	2.1930	-14.1236	115.014	46.965	0.1	13.000	0.045	0	10.000	0.038	0	12.495	0.007	0	17.24	10.47	18.75
BSC2076	208.263901	69.308044	2.1913	-118.3765	115.042	46.865	17.5	11.639	0.017	0	10.843	0.021	0	10.161	0.020	0	15.31	14.37	17.00
BSC2077	42.336086	19.303989	3.2777	43.9306	157.705	-35.485	14.2	12.175	0.020	0	11.408	0.028	0	11.090	0.043	0	16.06	15.22	17.56
BSC2078	239.790314	35.029816	1.6268	34.6804	56.091	49.411	22.9	12.455	0.034	0	11.699	0.047	0	11.178	0.044	0	16.52	15.47	18.11
BSC2079	242.852539	58.850430	0.5527	7.5504	89.928	43.330	8.5	13.251	0.036	0	12.546	0.045	0	11.997	0.051	0	15.90	16.06	18.39
BSC2080	219.092224	58.794147	1.0622	-28.9885	100.299	33.478	15.4	11.911	0.021	0	11.085	0.026	0	10.406	0.023	0	15.64	14.57	17.30
BSC2081	140.929199	22.909012	3.6713	-20.3108	206.056	43.078	20.3	12.033	0.024	3	11.252	0.036	3	10.691	0.034	3	15.73	14.83	17.59
BSC2082	174.807983	33.930710	1.3685	7.2030	184.869	73.061	15.4	13.167	0.049	0	12.445	0.068	0	11.961	0.067	0	17.20	16.36	18.73
BSC2083	207.470139	2.079339	2.6677	10.8041	334.600	61.305	9.6	13.052	0.034	0	12.240	0.035	0	11.553	0.046	0	16.34	15.35	18.14
BSC2084	344.887299	24.918261	0.7508	110.2839	93.047	-31.381	6.8	13.575	0.037	0	12.721	0.041	0	12.058	0.040	0	16.65	15.81	18.58
BSC2085	45.033485	16.504148	2.0025	15.1580	162.272	-36.352	9.1	13.195	0.037	0	12.390	0.045	0	11.797	0.051	0	16.53	15.67	18.32
BSC2086	213.563217	26.747463	0.9745	97.8556	36.493	71.560	12.5	12.652	0.028	0	11.951	0.036	0	11.672	0.047	0	16.34	15.58	17.98
BSC2087	149.982834	13.043937	1.2086	-13.8858	223.583	47.586	14.2	12.474	0.028	0	11.731	0.043	0	11.415	0.053	0	16.81	15.84	18.08
BSC2088	141.303589	52.286190	0.4543	-51.3009	165.011	44.364	7.5	13.438	0.035	3	12.686	0.051	3	11.955	0.046	3	16.58	15.75	18.51
BSC2089	165.257523	11.046878	2.3482	41.4232	239.366	59.480	9.5	13.273	0.046	0	12.476	0.053	0	11.953	0.069	0	16.82	15.86	18.42
BSC2090	12.895794	29.401217	2.3842	-2.9634	122.970	-33.470	17.1	12.121	0.025	0	11.429	0.033	0	11.045	0.046	0	16.06	15.26	17.60
BSC2091	226.004883	10.437902	1.5053	-15.9726	11.209	54.632	10.5	12.668	0.028	0	11.934	0.039	0	11.212	0.041	0	15.85	15.10	17.77
BSC2092	244.440048	6.064725	1.6636	89.6528	19.384	36.736	7.1	13.416	0.034	0	12.681	0.046	0	12.183	0.053	0	16.65	15.87	18.45
BSC2093	129.956879	48.783741	2.5183	11.5352	170.692	37.598	8.0	13.518	0.035	0	12.823	0.042	0	12.473	0.057	0	17.05	16.35	18.61
BSC2094	346.011139	22.624237	2.4716	24.2674	92.788	-33.886	12.0	12.228	0.020	0	11.456	0.024	0	11.054	0.038	0	16.48	15.61	17.54
BSC2095	355.277466	9.636063	3.1361	25.6650	95.653	-49.474	8.7	13.469	0.043	0	12.658	0.053	0	12.246	0.059	0	17.02	16.11	18.57
BSC2096	154.802490	63.967426	0.9753	41.2126	145.779	45.830	12.1	12.664	0.035	0	11.939	0.049	0	11.404	0.052	0	16.35	15.41	17.97
BSC2097	346.762085	4.549099	0.7564	0.4621	80.446	-49.514	10.1	13.218	0.039	0	12.520	0.052	0	12.039	0.059	0	16.77	15.95	18.41
															Fort	setz	ung n	achste	Seite

Fortsetzung	von	vorheriger	Seite

BSC 0 0 bit 0 bits 0 bits	Fortsetz	zung von [•]	vorherige	r Seite																
BRC0000 10.5400844 30.441048 1.2024 100.8860 181.279 0.0026 7.4 13.486 0.012 0 12.156 0.014 0 17.30 0.015 0 12.156 0.014 0 17.30 0.015 0 12.156 0.015 0 12.046 0.015 0 12.046 0.015 0 12.046 0.015 0 12.047 0.015 0 12.047 0.015 0 12.047 0.015 0 12.046 0.015 0 12.046 0.015 0 12.047 0.016 0 12.047 0.016 0 12.048 0.016 0 12.048 0.016 0 12.048 0.016 0 12.048 0.016 0 12.048 0.016 0 12.048 0.016 0 12.048 0.016 0 12.048 0.016 0 12.048 0.016 0 12.048 0.014 0 12.048 0.016 0 12.048 0.014 0 12.048 0.014 0 12.048 0.016 12.017 12.017 12.018	BSC	α	δ	Dist	Ori	glon	glat	r_{k20}	jk20	dj _{k20}	jf	h _{k20}	dh _{k20}	hf	kk20	dk _{k20}	kf	j _{peak}	hpeak	kpeak
BSC2000 223.937668 61.43264 2.3824 72.7285 85.773 64.685 21.1 12.470 0.037 0 11.230 0.066 0 16.77 16.61 18.80 BSC2100 12.717434 5.60375 2.9178 5.63375 17313 46.61 5.31341 0.0430 0 12.400 0.052 0 12.400 0.057 0 10.50 16.56 18.54 BSC2101 15.749845 1.3534 0.0454 0 11.435 0.0453 0 12.400 0.057 0 10.50 16.54 18.53 BSC2104 17.7198847 1.3337 0.4115 15.2444 0.025 0.045 0 11.435 0.043 0 11.435 0.043 0 16.47 16.41 18.33 BSC2106 17.44284 1.3037 16.4752 23.3711 8.663 6.5 14.176 0.664 0 12.050 0.046 0 12.050 0.046 0 17.05 16.16 18.54 18.39 15.69 18.43 18.56 18.56 18.57	BSC2098	158.660843	39.641048	1.2034	100.8804	180.279	59.065	7.4	13.508	0.032	0	12.766	0.043	0	12.195	0.044	0	17.30	16.49	18.61
BSC100 172.709856 e8.86485 1.8780 -6.6088 13.319 46.10 7.6 13.177 0.092 0 12.101 0.052 0 15.04 18.23 BSC1101 52.77143 5.40473 12.778 0.778 41.77 0.776 41.77 0.776 47.74 1.609 13.200 0.048 0 12.420 0.057 0 15.30 15.301 <td< td=""><td>BSC2099</td><td>226.937668</td><td>51.452694</td><td>2.3524</td><td>72.7285</td><td>85.773</td><td>54.685</td><td>21.1</td><td>12.439</td><td>0.037</td><td>0</td><td>11.731</td><td>0.045</td><td>0</td><td>11.259</td><td>0.065</td><td>0</td><td>16.77</td><td>16.01</td><td>18.00</td></td<>	BSC2099	226.937668	51.452694	2.3524	72.7285	85.773	54.685	21.1	12.439	0.037	0	11.731	0.045	0	11.259	0.065	0	16.77	16.01	18.00
BSC2110 52.71744 5.64075 2.9178 -36.4575 17.857 -79.425 6.5 13.914 0.048 0 12.470 0.076 0 10.96 16.16 18.94 BSC21104 117.709897 28.37310 1.6499 37.078 41.77 07.94 15.5 12.344 0.035 0 11.602 0.043 0 11.810 0.043 0 11.810 0.045 0 11.620 0.055 0 17.30 16.46 18.94 BSC2110 11.738986 0.3027 27.0127 24.478 6.3638 7.6 13.197 0.0364 0 12.030 0.061 0 15.30 16.42 18.53 BSC2110 10.70440283 0.0377 27.075 7.4788 0.097 12.060 0.048 0 12.080 0.046 0 15.69 18.41 BSC2112 157.89288 37.87148 1.2459 0.0777 10.1559 12.060 0.048 0 12.080 0.046 0 12.080 0.041 0 13.480 0.041 0 13.480	BSC2100	172.769836	68.864685	1.8780	-6.5088	133.319	46.610	7.6	13.177	0.032	0	12.568	0.050	0	12.101	0.052	0	16.50	15.94	18.23
BSC2109 BSC2109 BSC2108 DSC2108	BSC2101	52.717434	5.640375	2.9178	-36.3475	178.587	-39.425	6.5	13.914	0.069	0	13.181	0.073	0	12.477	0.076	0	16.96	16.16	18.94
BSC2103 15.6380447 51.676434 2.1636 1.710 10.092 53.272 7.1 13.280 0.048 0 11.85 0.048 0 11.85 0.048 0 11.85 0.048 0 11.85 0.048 0 11.85 0.048 0 11.85 0.048 0 11.85 0.048 0 12.649 0.041 0 12.647 0.053 0 17.32 16.44 18.43 BSC2101 14.244288 1.00401 1.3327 0.048 0 12.649 0.041 0 12.647 0.4408 0 16.71 16.71 19.17 BSC2101 14.244288 1.00401 1.3328 0.048 0 12.648 0.046 0 12.648 0.046 0 12.648 0.046 0 12.048 0.046 0 12.648 0.046 0 12.648 0.046 0 12.648 0.046 0 12.648 0.046 0 12.648 0.046 0 12.648 0.046 0 12.648 0.046 0 12.648 0.047	BSC2102																			
BSC2104 21.7769897 28.287310 1.0496 37.0788 41.757 67.054 15.25 12.444 0.025 0 11.62 0.034 0 11.105 0.043 0 11.05 0.043 0 11.05 0.043 0 11.05 0.043 0 11.05 0.043 0 11.05 0.043 0 11.05 0.043 0 11.05 0.043 0 11.05 0.043 0 11.05 0.043 0 11.05 0.043 0 11.05 0.043 0 11.05 0.043 0 11.05 0.043 0 11.05 0.043 0 11.05 0.043 0 11.05 0.043 0 11.05 0.044 0 12.052 0.066 0 17.06 18.04 18.05 1	BSC2103	156.380447	51.676434	2.1636	1.7916	160.992	53.272	7.1	13.826	0.044	0	13.000	0.048	0	12.420	0.057	0	17.10	16.36	18.87
BSC2105 15.326157 29.22823 21.719 -5.278 200.128 50.210 71.71 12.088 0.044 0 12.027 0.053 0 7.22 16.42 18.33 BSC2106 71.44258 17.3666 0.307 77.127 27.128 27.127 27.128 27.127 27.128 2	BSC2104	217.769897	28.287310	1.6496	37.0738	41.757	67.954	15.5	12.344	0.025	0	11.662	0.034	0	11.155	0.043	0	15.95	15.26	17.73
BSC2106 17.446288 1.07.84668 3.0327 27.127 244.754 63.98 7.6 13.197 0.036 0 12.419 0.037 0 11.823 0.058 0 16.271 11.45 18.823 BSC2107 44.24288 1.044698 3.091 -2.373 74.887 30.597 10.31 13.248 0.045 0 12.032 0.068 0 17.50 16.17 16.18 18.13 BSC2110 176.392743 3.2487 30.577 19.486 57.777 19.470 85.35 17.2 12.623 0.037 0 11.343 0.044 0 11.343 0.044 0 11.343 0.044 0 11.345 0.047 0 16.98 18.29 BSC2111 175.39274 30.7579 194.86 57.577 12.578 15.78 15.78 13.487 0.041 0 13.345 0.047 0 11.349 0.047 17.38 16.67 18.52 BSC2111 175.39274 37.3749 12.049 3.305 0.048 0 12.315 0.044 <td>BSC2105</td> <td>154.326187</td> <td>29.242823</td> <td>2.1719</td> <td>-5.2278</td> <td>200.128</td> <td>56.121</td> <td>9.3</td> <td>13.334</td> <td>0.035</td> <td>0</td> <td>12.608</td> <td>0.044</td> <td>0</td> <td>12.027</td> <td>0.050</td> <td>0</td> <td>17.32</td> <td>16.42</td> <td>18.53</td>	BSC2105	154.326187	29.242823	2.1719	-5.2278	200.128	56.121	9.3	13.334	0.035	0	12.608	0.044	0	12.027	0.050	0	17.32	16.42	18.53
BSC2107 144.354288 1.065410 1.5582 16.7782 233.701 36.633 6.5 14.176 0.064 0 13.439 0.0644 0 13.015 0.0864 0 17.59 16.71 19.17 BSC2100 206.520667 23.430227 0.8178 2.2433 21.756 75.377 18.1 13.069 0.18<0	BSC2106	170.446289	11.738686	0.3027	27.0127	244.754	63.938	7.6	13.197	0.036	0	12.419	0.037	0	11.832	0.053	0	16.27	15.45	18.23
BSC2109 266.269318 48.044498 3.5901 -2.2707 74.828 30.597 10.3 13.298 0.048 0 12.022 0.061 0 17.00 16.18 18.51 BSC2109 23.43027 0.817 -2.2453 10.049 24.251 16.04 15.20 12.024 0.048 0 12.028 0.048 0 12.048 0.048 0 12.048 0.048 0 12.048 0.048 0 12.048 0.048 0 12.048 0.048 0 11.444 0.068 0 17.63 16.64 18.23 BSC2113 13.39560 12.0791 0.0150 55.0175 12.6 12.182 0.021 3 11.185 0.010 3 1.1 1 1.1	BSC2107	144.254288	1.095410	1.5392	16.4782	233.701	36.663	6.5	14.176	0.056	0	13.439	0.054	0	13.015	0.086	0	17.59	16.71	19.17
BSC2109 208.526657 23.430227 0.8178 -2.42453 21.757 194.428 75.700 8.1 13.346 0.036 0 12.088 0.414 0.085 0 17.30 16.44 18.82 BSC2111 176.29274 30.788074 21.957 194.528 75.068 5.3 13.467 0.033 0 13.446 0.041 0 12.368 0.047 16.66 17.63 16.77 19.18 BSC2115 15.39660 12.693159 0.6422 71.997 123.79 -0.17 12.189 0.011 0 13.486 0.011 0 15.78 16.75 19.191 BSC2115 15.39660 12.6912 13.4724 13.4921 0.041 0 13.335 0.060 12.931 0.064 0 17.33 16.75 19.91 BSC2117 170.37244 21.39493 3.474191 24.0923 13.588 0.040 0 12.456 0.338 0 16.049 18.43 16.12 15.83 16.22 13.582 0.845 17.33 16.65 15.69 19.91 <td>BSC2108</td> <td>266.269318</td> <td>48.044498</td> <td>3.5901</td> <td>-27.2075</td> <td>74.828</td> <td>30.597</td> <td>10.3</td> <td>13.298</td> <td>0.048</td> <td>0</td> <td>12.523</td> <td>0.057</td> <td>0</td> <td>12.032</td> <td>0.061</td> <td>0</td> <td>17.00</td> <td>16.18</td> <td>18.51</td>	BSC2108	266.269318	48.044498	3.5901	-27.2075	74.828	30.597	10.3	13.298	0.048	0	12.523	0.057	0	12.032	0.061	0	17.00	16.18	18.51
BSC2110 168.304.506 32.238913 0.0949 94.0251 194.726 17.2 12.52 13.867 0.036 0 11.833 0.048 0 11.434 0.058 0 17.30 16.48 18.82 BSC2111 157.892568 28.788743 12.355 0.150.66 5.3 14.562 0.041 0 13.486 0.041 0 13.486 0.041 0 13.486 0.041 0 13.486 0.041 0 13.486 0.041 0 13.486 0.041 0 13.486 0.041 0 13.486 0.041 0 13.205 0.053 0 12.049 0.044 0 17.30 16.47 13.047 10.377 13.202 0.041 0 13.355 0.057 0 12.018 0.064 0 17.33 16.59 19.01 BSC2111 150.3122 1591 0.2417 27.37 73.288 7.5 13.090 0.084 0 12.558 0.057 0 12.618 0.064 1 1.050 0.38 16.617 16.50 18.52 </td <td>BSC2109</td> <td>208.526657</td> <td>23.430227</td> <td>0.8178</td> <td>-2.2453</td> <td>21.756</td> <td>75.370</td> <td>8.1</td> <td>13.366</td> <td>0.036</td> <td>0</td> <td>12.606</td> <td>0.048</td> <td>0</td> <td>12.088</td> <td>0.046</td> <td>0</td> <td>16.56</td> <td>15.69</td> <td>18.41</td>	BSC2109	208.526657	23.430227	0.8178	-2.2453	21.756	75.370	8.1	13.366	0.036	0	12.606	0.048	0	12.088	0.046	0	16.56	15.69	18.41
BSC2111 176.2927.00 30.788074 2.1957 19.7779 19.4267 75.0966 5.3 13.849 0.041 0 12.463 0.007 0 16.96 16.07 19.51 BSC2112 15.789268 82.788743 1.236 0.620 71.8978 12.452 0.017 3 11.185 0.041 0 12.463 0.007 3 1.1.846 0.047 0 17.63 1.677 19.51 BSC2111 170.73798 87.367149 1.7412 -136.5274 133.892 79.549 7.9 13.972 0.041 0 13.236 0.057 0 12.618 0.02 0 17.33 16.67 19.04 BSC2112 170.374501 2.0917 51.788 0.040 0 12.248 0.047 0 17.68 16.61 16.61 18.57 BSC2124 133.66103 1.044 18.532 29.78 31.940 0.040 0 12.937 0.045 0 11.616 15.83 18.52 BSC2124 133.66103 1.0416 12.659 53.945 <td< td=""><td>BSC2110</td><td>186.304596</td><td>32.233913</td><td>0.0949</td><td>24.0251</td><td>169.470</td><td>82.355</td><td>17.2</td><td>12.524</td><td>0.036</td><td>0</td><td>11.833</td><td>0.048</td><td>0</td><td>11.434</td><td>0.058</td><td>0</td><td>17.30</td><td>16.48</td><td>18.29</td></td<>	BSC2110	186.304596	32.233913	0.0949	24.0251	169.470	82.355	17.2	12.524	0.036	0	11.833	0.048	0	11.434	0.058	0	17.30	16.48	18.29
BSC2112 157.89288 25.783743 1.2545 67.757 20.559 50.180 5.2 14.592 0.011 0 13.849 0.047 0 17.43 16.77 19.51 BSC2113 13.39650 12.683130 0.86317 17.442 126.771 20.559 50.176 12.782 0.011 0 13.849 0.041 0 13.849 0.041 0 13.849 0.041 0 13.849 0.041 0 13.849 0.041 0 13.849 0.041 0 13.849 0.041 0 13.849 0.044 0 17.35 16.67 19.01 BSC2110 188.01506 20.158512 19.991 62.411 22.878 0.654 0 11.749 0.048 0 16.46 16.67 18.37 BSC2121 133.6442 27.768038 1.7150 39.945 63.947 23.011 12.308 0.045 0 11.999 0.038 0 16.61 15.88 18.37 BSC2122 22.786638 27.18777 32.858 1.7150 39.945 63.337 </td <td>BSC2111</td> <td>176.292740</td> <td>30.788074</td> <td>2.1957</td> <td>19.7579</td> <td>194.826</td> <td>75.066</td> <td>5.3</td> <td>13.867</td> <td>0.033</td> <td>0</td> <td>13.045</td> <td>0.040</td> <td>0</td> <td>12.363</td> <td>0.037</td> <td>0</td> <td>16.96</td> <td>16.02</td> <td>18.82</td>	BSC2111	176.292740	30.788074	2.1957	19.7579	194.826	75.066	5.3	13.867	0.033	0	13.045	0.040	0	12.363	0.037	0	16.96	16.02	18.82
BSC2113 13.39560 12.603130 0.8620 71.8978 123.749 -50.175 12.6 12.182 0.021 3 11.185 0.023 3 10.196 0.017 3 -1 -1 -1 -1 BSC2116 BSC2117 100.372498 37.367193 0.17112 -136.5271 123.892 70.543 7.5 13.393 0.044 0 13.305 0.057 0 12.518 0.0024 0 17.35 16.59 10.01 BSC2112 100.8512 1.9931 62.411 267.42 27.373 37.362 0.044 0 13.285 0.057 0 12.618 0.064 0 12.585 0.037 0 13.094 0.11.61 15.33 <	BSC2112	157.892868	28.783743	1.2545	67.7577	201.559	59.180	5.2	14.592	0.041	0	13.849	0.041	0	13.186	0.047	0	17.63	16.77	19.51
BSC2115 BSC2117 BSC2118 BSC2128 BSC2138 BSC214	BSC2113	13.395650	12.693130	0.8620	71.8978	123.749	-50.175	12.6	12.182	0.021	3	11.185	0.023	3	10.196	0.017	3	-1	-1	-1
BSC2116 BSC2117 190.372498 37.367149 1.7412 -136.5274 133.892 79.549 7.5 13.997 0.041 0 13.365 0.067 0 12.013 0.064 0 17.35 16.69 19.01 BSC2117 181.8015106 20.158312 1.93918 62.411 29.472 81.740 10.3 13.202 0.064 0 11.214 0.064 0 17.33 16.67 19.04 BSC2117 181.861506 20.158312 12.9391 62.411 29.425 20.057 0 14.655 0.037 0 11.040 0.048 0 18.46 17.68 20.211 BSC2122 22.786638 71.15757 3.2858 -1.715 39.945 63.433 7.8 13.386 0.037 0 12.037 0.045 0 16.51 15.22 18.43 BSC2127 164.50606 24.87184 2.7488 14.346 40.640 0 13.235 0.041 0 12.070 0.045 0 17.24 16.34 15.61 18.27 17.35 18.417	BSC2115																			
BSC2117 19.0.372488 37.367149 1.7.412 -136.574 133.892 7.9 13.992 0.0.41 0 13.305 0.050 0 12.318 0.040 0 17.33 16.56 19.01 BSC2119 17.31744 21.039255 0.6577 61.744 28.742 27.744 87.328 7.57 13.993 0.044 0 12.318 0.045 0 12.318 0.042 0 16.44 15.61 13.37 BSC21219 13.924149 34.744591 24.0493 215.8302 295.758 34.54 7.9 13.200 0.040 0 11.050 0.048 0 18.46 16.61 15.83 18.36 0.37 11.150 0.040 1 10.703 0.045 0 16.21 15.52 18.38 BSC2122 16.415069 2.427583 14.238 0.054 0 11.027 0.045 0 16.21 15.52 18.34 BSC2122 246.300550 5.474748 13.399 0.040 0 12.248 0.046 0 12.245 0.050 0 <td>BSC2116</td> <td></td>	BSC2116																			
BSC2118 175.317245 21.39245 0.6877 51.7364 227.137 75.238 7.5 13.292 0.046 0 12.238 0.062 0 17.33 16.67 19.04 BSC2120 188.015106 20.0158312 21.0931 62.2141 28.7424 81.740 10.3 13.202 0.0440 0 12.518 0.0672 0 18.46 17.69 20.11 BSC2121 131.924140 34.744591 24.0903 -168.8806 188.572 37.962 5.0 15.168 0.042 0 14.565 0.138 0 14.059 0.038 0 16.61 15.83 18.32 BSC2125 222.786364 71.5779 3.2858 -1.7150 39.455 5.433 7.8 3.360 0.057 0 11.970 0.045 0 11.971 0.045 0 11.929 0.38 0 17.83 16.67 13.292 BSC2127 164.505066 7.47748 18.387 14.337 -0.728 16.37 15.29 16.31 15.29 15.33 15.14 14.284 0.054 </td <td>BSC2117</td> <td>190.372498</td> <td>37.367149</td> <td>1.7412</td> <td>-136.5274</td> <td>133.892</td> <td>79.549</td> <td>7.9</td> <td>13.972</td> <td>0.041</td> <td>0</td> <td>13.305</td> <td>0.050</td> <td>0</td> <td>12.931</td> <td>0.064</td> <td>0</td> <td>17.35</td> <td>16.59</td> <td>19.01</td>	BSC2117	190.372498	37.367149	1.7412	-136.5274	133.892	79.549	7.9	13.972	0.041	0	13.305	0.050	0	12.931	0.064	0	17.35	16.59	19.01
BSC2119 188.015106 20.185812 1.9931 62.4111 269.422 81.740 10.3 13.202 0.40 0 12.379 0.054 0 11.714 0.048 0 16.54 15.61 18.37 BSC2121 131.924149 34.744591 24.0903 -155.8806 188.572 37.962 5.0 15.168 0.092 0 14.555 0.138 0 14.059 0.130 0 18.46 17.69 20.11 BSC21221 131.924149 34.744591 24.0903 -35.1240 126.592 36.972 22.9 11.791 0.026 0 11.277 0.045 0 16.51 18.832 BSC2125 222.786636 27.15757 3.2858 -1.17150 39.945 63.433 7.8 13.386 0.037 0 12.090 0.055 0 17.28 16.33 15.82 18.43 BSC2125 24.5746004 24.45748 14.0399 221.469 0.041 0 12.276 0.045 0 17.36 16.30 15.64 15.70 15.39 14.347 0.05	BSC2118	175.317245	21.939285	0.6877	51.7364	227.137	73.238	7.5	13.993	0.048	0	13.285	0.057	0	12.518	0.062	0	17.33	16.67	19.04
BSC2120 BSC2121 13.924149 34.744591 24.0903 -158.8806 188.572 37.962 5.0 15.168 0.092 0 14.555 0.130 0 18.46 17.69 20.11 BSC2121 133.664452 17.689508 1.2944 18.3323 209.578 34.944 7.9 13.260 0.026 3 11.156 0.0130 0 18.46 17.69 20.11 BSC2124 177.6316666 71.57579 3.2558 -1.1715 39.945 63.433 7.8 13.366 0.037 0 12.700 0.045 0 11.927 0.045 0 16.51 15.82 18.43 BSC2124 246.36050 67.457748 1.3894 50.0287 87.348 42.002 12.51 13.330 0.041 0 12.081 0.064 0 17.08 16.30 18.59 BSC2121 0.543.593 1.2106 40.619 63.477 7.8 14.337 0.064 0 17.08 16.30 18.57 17.56 18.58 11.156 10.539 10.611 10.539 10.6	BSC2119	188.015106	20.158312	1.9931	62.4111	269.442	81.740	10.3	13.202	0.040	0	12.379	0.054	0	11.714	0.048	0	16.54	15.61	18.37
BSC2121 13.1.924149 34.744591 24.0903 -15.88.800 18.468 0.092 0 14.656 0.138 0 18.46 17.69 20.11 BSC2122 133.66345 17.689503 4.1700 -35.1240 125.58 36.972 22.9 11.791 0.026 3 11.166 0.040 1 10.793 0.047 3 16.12 15.38 18.32 BSC2125 222.786636 27.157579 3.2858 -1.7150 39.945 63.433 7.8 13.386 0.037 0 12.700 0.065 0 16.21 15.38 18.43 BSC2125 222.786636 27.157579 3.2858 -1.7150 39.945 63.427 10.1 13.334 0.046 0 12.700 0.055 0 17.28 16.371 19.29 BSC2123 146.500506 27.457186 2.738 14.09391 21.169 63.287 17.57 13.336 0.042 0 12.081 0.064 0 17.48 16.30 18.67 BSC2132 164.505056 5.0193 3.557	BSC2120																			
BSC2122 133.663482 17.689508 1.294 18.332 209.578 34.944 7.9 13.260 0.029 0 12.558 0.047 0 10.793 0.047 3 16.61 15.83 18.32 BSC2124 17.6316666 79.081503 4.1700 -55.1240 12.659 36.972 22.9 11.710 0.026 3 11.156 0.040 1 10.793 0.047 3 16.61 15.83 18.32 BSC2124 164.05066 27.157579 3.2858 -1.7150 39.945 63.433 7.8 13.386 0.067 0 12.205 0.045 0 16.51 15.22 18.43 BSC2128 246.36050 57.45748 1.398 50.0287 87.348 42.002 12.1 13.336 0.041 12.281 0.045 0 12.698 0.045 0 13.649 0.078 13.346 0.045 0 13.649 0.077 0 12.622 0.063 0 12.622 0.063 0 12.622 0.633 12.623 0.616.1 15.78 19.30 <td>BSC2121</td> <td>131.924149</td> <td>34.744591</td> <td>24.0903</td> <td>-158.8806</td> <td>188.572</td> <td>37.962</td> <td>5.0</td> <td>15.168</td> <td>0.092</td> <td>0</td> <td>14.565</td> <td>0.138</td> <td>0</td> <td>14.059</td> <td>0.130</td> <td>0</td> <td>18.46</td> <td>17.69</td> <td>20.11</td>	BSC2121	131.924149	34.744591	24.0903	-158.8806	188.572	37.962	5.0	15.168	0.092	0	14.565	0.138	0	14.059	0.130	0	18.46	17.69	20.11
BSC2123 IT6316696 79.681503 4.1700 -35.1240 126.592 36.972 22.9 11.791 0.026 3 11.156 0.040 1 10.793 0.047 3 16.12 15.33 17.56 BSC2125 222.786636 27.157579 3.2858 -1.7150 39.945 63.433 7.8 13.366 0.037 0 12.739 0.045 0 16.12 15.82 18.43 BSC2127 164.505096 20.487186 2.7438 140.9391 221.169 63.287 10.1 13.340 0.040 0 12.721 0.057 0 12.06 0.064 0 17.73 18.630 18.67 BSC2129 95.744878 16.409 47.73 8.1437 0.058 13.439 0.074 0 18.17 0.045 0 17.36 16.50 18.67 BSC2130 25.354058 9.425733 1.200 4.6619 3.777 7.8 14.428 0.033 0 13.356 0.077 0 12.622 0.890 17.73 16.50 18.00 16.50 1	BSC2122	133.663452	17.689508	1.2944	18.3323	209.578	34.944	7.9	13.260	0.029	0	12.558	0.037	0	11.909	0.038	0	16.61	15.83	18.32
BSC2124 BSC2125 22.7866.05 71.57579 3.2858 1.7150 39.945 63.433 7.8 13.386 0.037 0 12.739 0.045 0 11.927 0.045 0 16.51 15.82 18.43 BSC2126 344.151764 5.41309 1.3480 -58.0945 78.173 -47.224 5.5 14.364 0.054 0 12.701 0.055 0 17.28 16.37 19.29 BSC2127 164.505096 57.45774 1.3898 50.0287 87.348 42.002 12.5 13.305 0.044 0 12.077 0.054 0 12.081 0.064 0 17.08 16.30 18.59 BSC2123 125.34058 39.425793 1.2100 45.0619 63.179 38.777 7.8 14.328 0.038 0 13.049 0.078 0 13.037 0.073 0 18.17 17.39 19.40 BSC2132 40.561081 5.510049 1.7737 37.029 166.49 47.779 8.2 13.340 0.040 0 12.499 0.040 <	BSC2123	176.316696	79.681503	4.1700	-35.1240	126.592	36.972	22.9	11.791	0.026	3	11.156	0.040	1	10.793	0.047	3	16.12	15.33	17.56
BSC2125 222.786636 271.57579 3.2858 -1.7150 39.945 6.3.433 7.8 13.386 0.037 0 12.739 0.045 0 1.927 0.045 0 1.6.51 15.82 18.338 17.73 16.3648 0.067 0 12.700 0.055 0 17.28 16.37 19.29 BSC2124 246.300506 20.487186 2.7438 140.03391 221.169 63.287 10.1 13.305 0.044 0 12.205 0.055 0 17.28 16.31 18.59 BSC2123 245.305058 164.403 -13.6384 317.526 78.951 51 14.237 0.046 0 12.876 0.045 0 17.36 16.50 19.16 BSC2131 176.979538 9.041227 0.4472 -21.1065 260.275 66.498 8.8 13.344 0.062 0 13.356 0.077 0 12.622 0.089 0 17.09 16.31 19.00 BSC2133 329.7574518 18.597306 1.7671 16.78 8.9 13.340 0.062	BSC2124																			
BSC2126 344.151764 5.421309 1.480 -58.0945 78.173 -47.224 5.5 14.364 0.054 0 13.648 0.069 0 12.700 0.055 0 17.28 16.37 19.29 BSC2127 164.50506 57.457748 1.3898 50.0287 87.348 42.002 12.5 13.305 0.044 0 12.771 0.057 0 12.081 0.064 0 17.08 16.30 18.67 BSC2129 155.74488 16.407665 1.6403 17.69 60.176 0 12.081 0.064 0 17.08 16.30 18.67 BSC2130 253.534058 39.422793 1.2100 45.0619 63.179 38.77 8.14.337 0.058 0 13.037 0.073 0 18.17 17.39 19.40 BSC2131 230.578049 2.5856958 1.3040 -12.066 66.498 8.9 13.344 0.034 0 12.499 0.407 0 11.840 0.443 0 16.68 15.70 18.64 BSC2134 230.578049	BSC2125	222.786636	27.157579	3.2858	-1.7150	39.945	63.433	7.8	13.386	0.037	0	12.739	0.045	0	11.927	0.045	0	16.51	15.82	18.43
BSC2127 164.505096 20.487186 2.7.438 140.9391 221.169 63.287 10.1 13.394 0.040 0 12.271 0.057 0 12.081 0.064 0 17.14 16.30 18.67 BSC2128 246.360550 57.45774 1.3898 50.0287 87.348 42.002 12.5 10.057 0 12.081 0.064 0 17.08 16.30 18.59 BSC2130 253.534058 39.425733 1.2100 45.061 33.77 7.8 14.333 0.068 0 13.649 0.077 0 12.620 0.089 0 17.09 16.31 19.00 BSC2133 329.74518 18.697306 1.7691 42.6216 78.68 -30.046 8.8 13.458 0.038 0 12.260 0.073 0 17.57 16.78 18.40 BSC2134 239.578049 25.856658 1.3034 0.447.673 9.0 13.846 0.032 0 17.37 16.50 19.00 BSC2134 146.476501 42.64398 0.9411 17.78 18.	BSC2126	344.151764	5.421309	1.3480	-58.0945	78.173	-47.224	5.5	14.364	0.054	0	13.648	0.069	0	12.700	0.055	0	17.28	16.37	19.29
BSC2128 246.360550 57.457748 1.3898 50.0287 87.348 42.002 12.5 13.305 0.044 0 12.877 0.054 0 12.081 0.044 0 12.081 0.044 0 12.886 0.045 0 12.886 0.043 0 12.886 0.043 0 12.886 0.043 0 12.886 0.043 0 12.886 0.043 0 13.339 0.041 0 12.886 0.045 0 13.336 0.041 0 12.876 0.045 0 13.336 0.041 0 12.877 0.053 0 13.337 0.73 0 18.17 17.39 19.40 BSC2132 40.561081 5.510049 1.4737 37.0329 166.449 -47.779 8.2 13.314 0.034 0 12.419 0.040 0 11.840 0.043 0 16.82 15.88 BSC2133 239.578049 25.86958 1.3240 -135.921 42.914 48.412 7.3 14.3281 0.039 0 13.666 0.063 12.362	BSC2127	164.505096	20.487186	2.7438	140.9391	221.169	63.287	10.1	13.394	0.040	0	12.721	0.057	0	12.205	0.059	0	17.14	16.30	18.67
BSC2129 195.744888 16.407665 1.6403 -1.3.6384 317.526 7.851 5.1 14.228 0.033 0 13.539 0.041 0 12.876 0.045 0 17.36 16.50 19.16 BSC2130 253.534055 39.4277 0.4472 -21.1065 260.275 66.48 8.9 13.334 0.062 0 13.356 0.077 0 12.622 0.089 0 17.09 16.31 19.40 BSC2133 332.974518 18.607306 1.7691 42.6216 78.368 -30.046 8.8 13.458 0.038 0 12.721 0.066 0 12.860 0.053 0 16.92 15.99 18.52 BSC2135 239.578049 25.856958 1.3240 -104.0862 43.160 47.673 9.0 13.861 0.052 0 12.622 0.073 0 17.57 16.78 19.35 BSC2134 146.476501 42.64398 0.9412 -27.7811 17.8029 49.509 7.4 13.821 0.053 0 13.262 0.073 0	BSC2128	246.360550	57.457748	1.3898	50.0287	87.348	42.002	12.5	13.305	0.044	0	12.577	0.054	0	12.081	0.064	0	17.08	16.30	18.59
BSC2130 253.54058 39.425793 1.2100 45.0619 63.179 38.777 7.8 14.337 0.058 0 13.049 0.073 0 18.17 17.39 19.40 BSC2131 176.979538 9.04127 0.4177 -21.065 260.275 66.498 -9.1779 8.2 13.344 0.034 0 11.840 0.043 0 16.68 19.00 BSC2133 332.974518 18.697306 1.7691 42.6216 78.368 -30.046 8.8 13.452 0.038 0 12.760 0.073 0 16.75 16.59 18.52 BSC2135 239.578049 25.856658 1.3240 -104.0862 43.160 47.673 9.0 13.861 0.059 3 13.066 0.063 0 12.430 0.045 0 17.23 16.53 18.88 BSC2135 198.594513 34.494129 2.1288 28.592 90.593 81.143 5.0 14.713 0.063 0 12.430 0.045 0 17.63 19.20 BSC2136 161.11555 27.301	BSC2129	195.744888	16.407665	1.6403	-13.6384	317.526	78.951	5.1	14.228	0.033	0	13.539	0.041	0	12.876	0.045	0	17.36	16.50	19.16
BSC2131 176.979538 9.041227 0.4472 -21.1065 260.275 66.498 8.9 13.394 0.062 0 13.356 0.077 0 12.622 0.089 0 17.69 16.31 19.00 BSC2133 332.974518 18.697306 1.7691 42.6216 78.368 -30.046 8.8 13.482 0.038 0 12.721 0.056 0 12.060 0.053 0 16.92 15.99 18.58 BSC2136 239.578049 25.856958 1.3204 -135.9212 42.194 48.412 7.3 14.323 0.061 0 13.549 0.062 0 12.632 0.073 0 17.57 16.78 19.05 BSC2136 146.476501 42.64489 0.9412 -27.7871 178.029 49.50 7.4 13.366 0.062 0 12.432 0.045 17.23 16.50 19.00 BSC2137 161.11555 27.30147 5.6664 4.4780 20.518 61.477 7.1 13.968 0.051 0 13.420 0.076 0 17.64	BSC2130	253.534058	39.425793	1.2100	45.0619	63.179	38.777	7.8	14.337	0.058	0	13.649	0.078	0	13.037	0.073	0	18.17	17.39	19.40
BSC2132 40.561081 5.510049 1.4737 37.0329 166.449 -47.779 8.2 13.314 0.034 0 11.840 0.043 0 16.68 15.70 18.40 BSC2133 332.974514 18.69706 1.761 42.616 78.368 -30.046 8.8 12.721 0.056 0 12.060 0.073 0 17.57 16.78 19.35 BSC2136 240.537018 26.329336 1.6034 -104.0862 43.160 47.673 9.0 13.861 0.059 3 13.066 0.063 0 12.532 0.079 3 17.37 16.50 19.00 BSC2137 146.476501 42.64398 0.9412 -27.7871 178.029 49.509 7.4 13.821 0.039 0 13.062 0.046 0 12.430 0.045 0 17.69 16.94 19.66 BSC2139 161.11555 27.301847 5.6664 4.4780 205.180 61.847 7.1 13.968 0.051 0 13.620 0.073 0 18.64 16.92 19.30	BSC2131	176.979538	9.041227	0.4472	-21.1065	260.275	66.498	8.9	13.934	0.062	0	13.356	0.077	0	12.622	0.089	0	17.09	16.31	19.00
BSC2133 332.974518 18.697306 1.7691 42.6216 78.368 -30.046 8.8 13.458 0.038 0 12.721 0.056 0 12.060 0.053 0 16.92 15.99 18.58 BSC2134 239.578049 25.856958 1.3240 -135.9212 42.194 48.412 7.3 14.323 0.061 0 13.549 0.062 0 12.760 0.073 0 17.57 16.78 19.35 BSC2135 240.537018 26.329336 1.6034 -104.0862 43.160 47.673 9.0 13.861 0.059 3 13.066 0.063 0 12.522 0.079 3 17.37 16.50 19.00 BSC2137 146.476501 42.44498 0.9412 -27.7871 17.8029 49.509 7.4 13.821 0.039 0 13.062 0.046 0 12.430 0.047 0 17.51 16.69 18.521 0.5180 61.847 7.1 13.968 0.051 0 13.242 0.076 0 17.64 16.92 19.30 <	BSC2132	40.561081	5.510049	1.4737	37.0329	166.449	-47.779	8.2	13.314	0.034	0	12.499	0.040	0	11.840	0.043	0	16.68	15.70	18.40
BSC2134 29.578049 25.856958 1.3240 -135.9212 42.194 48.412 7.3 14.323 0.061 0 13.549 0.062 0 12.760 0.073 0 17.57 16.78 19.35 BSC2136 240.537018 26.329336 1.6034 -104.0862 43.160 47.673 9.0 13.861 0.059 3 13.066 0.063 0 12.332 0.079 3 17.37 16.50 19.00 BSC2137 146.476501 42.644398 0.9412 -27.7871 178.029 49.509 7.4 13.821 0.039 0 13.062 0.046 0 12.430 0.045 0 17.57 16.58 18.88 BSC2138 198.59413 34.494129 2.128 28.8592 90.593 81.143 5.0 14.731 0.063 0 13.242 0.074 0 17.57 16.66 19.02 BSC2140 206.53880 29.63615 2.01913 11.530 47.914 7.719 7.1 14.281 0.058 0 13.663 0.074 0	BSC2133	332.974518	18.697306	1.7691	42.6216	78.368	-30.046	8.8	13.458	0.038	0	12.721	0.056	0	12.060	0.053	0	16.92	15.99	18.58
BSC2135 BSC2136 240.57018 26.329336 1.6034 -104.0862 43.160 47.673 9.0 13.861 0.059 3 13.066 0.063 0 12.532 0.079 3 17.37 16.50 19.00 BSC2137 146.476501 42.644398 0.9412 -27.7871 178.029 49.509 7.4 13.821 0.039 0 13.062 0.046 0 12.430 0.045 0 17.23 16.35 18.88 BSC2135 194.594513 34.494129 2.1288 28.8592 90.593 81.143 5.0 14.731 0.063 0 14.091 0.083 0 13.242 0.074 0 17.51 16.66 19.02 BSC2140 206.533890 29.636152 2.1913 11.5320 47.914 77.719 7.1 14.281 0.058 0 13.406 0.074 0 12.965 0.076 0 17.64 16.92 19.30 BSC2143 229.840363 59.139984 1.2816 -42.6591 94.802 49.122 7.0 13.940	BSC2134	239.578049	25.856958	1.3240	-135.9212	42.194	48.412	7.3	14.323	0.061	0	13.549	0.062	0	12.760	0.073	0	17.57	16.78	19.35
BSC2136 240.537018 26.329336 1.0034 -104.0862 43.160 47.673 9.0 13.861 0.059 3 13.066 0.063 0 12.532 0.079 3 17.37 16.50 19.00 BSC2137 146.476501 42.644398 0.9412 -27.7871 178.029 49.509 7.4 13.821 0.039 0 13.062 0.046 0 12.430 0.044 0 17.69 16.94 19.00 BSC2137 161.115555 27.301847 5.6664 4.4780 205.180 61.847 7.1 13.968 0.051 0 13.212 0.072 0 12.618 0.060 0 17.51 16.66 19.02 BSC2140 206.533890 29.636152 3.0041 -14.0776 223.688 62.825 7.3 14.755 0.065 0 14.057 0.88 0 13.420 0.073 0 18.16 17.31 19.71 BSC2143 229.840363 59.139984 1.2816 -42.6591 94.802 -55.873 10.9 12.922 0.036 0	BSC2135																			
BSC2137 146.476501 42.644398 0.9412 -27.7871 17.029 49.509 7.4 13.821 0.039 0 13.062 0.046 0 12.430 0.045 0 17.23 16.35 18.88 BSC2138 198.594513 34.494129 2.1288 28.8592 90.593 81.143 5.0 14.731 0.063 0 13.424 0.074 0 17.69 16.94 19.66 BSC2139 161.11555 27.301847 5.6664 4.4780 205.180 61.847 7.1 13.968 0.051 0 13.623 0.076 0 17.61 16.66 19.02 BSC2140 206.533890 29.636152 2.1913 11.5320 47.914 77.19 7.1 14.281 0.055 0 13.663 0.076 0 17.64 16.92 19.30 BSC2142 29.840363 59.139984 1.2816 -42.6591 94.802 49.122 7.0 13.940 0.038 0 13.109 0.044 0 16.94 16.22 18.94 18.62144 30.109873 2.6695	BSC2136	240.537018	26.329336	1.6034	-104.0862	43.160	47.673	9.0	13.861	0.059	3	13.066	0.063	0	12.532	0.079	3	17.37	16.50	19.00
BSC2138 198.594513 34.49129 2.1288 28.8592 90.593 81.143 5.0 14.731 0.063 0 14.091 0.083 0 13.424 0.074 0 17.69 16.94 19.66 BSC2139 161.115555 27.301847 5.6664 4.4780 205.180 61.847 7.1 13.968 0.051 0 13.212 0.072 0 12.618 0.060 0 17.51 16.66 19.02 BSC2140 206.533890 29.636152 2.1913 11.5320 47.914 77.719 7.1 14.281 0.058 0 13.663 0.074 0 17.64 16.92 19.30 BSC2141 164.82285 19.256365 3.0041 -14.0776 223.688 62.825 7.3 14.755 0.065 0 13.109 0.044 0 16.94 16.22 18.94 BSC2143 229.840363 59.139984 1.2816 -42.6591 94.802 49.122 7.0 13.940 0.038 0 13.109 0.044 0 16.94 16.22 18.94	BSC2137	146.476501	42.644398	0.9412	-27.7871	178.029	49.509	7.4	13.821	0.039	0	13.062	0.046	0	12.430	0.045	0	17.23	16.35	18.88
BSC2139 161.115555 27.301847 5.6664 4.4780 205.180 61.847 7.1 13.968 0.051 0 13.212 0.072 0 12.618 0.060 0 17.51 16.66 19.02 BSC2140 206.533890 29.636152 2.1913 11.5320 47.914 77.719 7.1 14.281 0.058 0 13.663 0.074 0 12.065 0.076 0 17.64 16.92 19.30 BSC2141 164.482285 19.256365 3.0041 -14.0776 223.688 62.825 7.3 14.755 0.065 0 14.057 0.088 0 13.420 0.073 0 18.16 17.31 19.71 BSC2142 BSC2143 229.840363 59.139984 1.2816 -42.6591 94.802 49.122 7.0 13.940 0.038 0 13.109 0.040 0 12.377 0.044 0 16.94 16.22 18.94 BSC2144 30.109873 2.669564 1.7695 36.0689 154.802 -55.873 10.9 12.992 0.036 0 12.261 0.047 0 11.620 0.048 0 16.78 15.83 18.36 BSC2145 BSC2147 216.627640 39.062035 2.7401 83.1635 70.047 66.893 7.0 14.030 0.041 0 13.186 0.042 0 12.526 0.054 0 17.26 16.41 19.06 BSC2148 5.904937 4.706235 1.9240 41.2682 109.966 -57.463 8.2 13.896 0.051 0 13.111 0.061 0 12.484 0.067 0 17.09 16.19 18.96 BSC2149 160.182953 33.016373 1.9460 3.2280 193.119 61.237 6.8 14.299 0.054 0 13.752 0.071 0 12.899 0.065 0 17.63 16.84 19.28 BSC2150 BSC2150 BSC2153 55.309780 4.890277 2.1998 90.0750 181.494 -37.983 5.9 14.047 0.057 0 12.803 0.058 0 12.196 0.066 0 16.95 16.13 18.65 BSC2153 55.309780 4.890277 2.1998 90.0750 181.494 -37.983 5.9 14.047 0.057 0 13.293 0.058 0 12.196 0.066 0 16.95 16.13 18.65 BSC2150	BSC2138	198.594513	34.494129	2.1288	28.8592	90.593	81.143	5.0	14.731	0.063	0	14.091	0.083	0	13.424	0.074	0	17.69	16.94	19.66
BSC2140 29.636152 2.1913 11.5320 47.914 77.719 7.1 14.281 0.058 0 13.663 0.074 0 12.965 0.076 0 17.64 16.92 19.30 BSC2141 164.482285 19.256365 3.0041 -14.0776 223.688 62.825 7.3 14.755 0.065 0 14.057 0.088 0 13.420 0.073 0 18.16 17.31 19.71 BSC2142 229.840363 59.139984 1.2816 -42.6591 94.802 49.122 7.0 13.940 0.038 0 13.109 0.040 0 12.377 0.044 0 16.94 16.22 18.94 BSC2146 30.109873 2.669564 1.7695 36.0689 154.802 -55.873 10.9 12.992 0.036 0 12.261 0.047 0 11.620 0.048 0 16.78 15.83 18.36 BSC2146 BSC2147 216.627640 39.062035 2.7401 83.1635 70.047 66.893 7.0 14.030 0.041 0	BSC2139	161.115555	27.301847	5.6664	4.4780	205.180	61.847	7.1	13.968	0.051	0	13.212	0.072	0	12.618	0.060	0	17.51	16.66	19.02
BSC2141 164.482285 19.256365 3.0041 -14.0776 223.688 62.825 7.3 14.755 0.065 0 14.057 0.088 0 13.420 0.073 0 18.16 17.31 19.71 BSC2142 229.840363 59.139984 1.2816 -42.6591 94.802 49.122 7.0 13.940 0.038 0 13.109 0.044 0 16.94 16.22 18.94 BSC2143 30.109873 2.669564 1.7695 36.0689 154.802 -55.873 10.9 12.992 0.036 0 12.261 0.047 0 11.620 0.048 0 16.78 15.83 18.36 BSC2144 30.109873 2.669564 1.7695 36.0689 154.802 -55.873 10.9 12.992 0.036 0 12.261 0.047 0 11.620 0.048 0 16.78 15.83 18.36 BSC2147 216.627640 39.062035 2.7401 83.1635 70.047 66.893 7.0 14.030 0.041 0 13.186 0.042 0	BSC2140	206.533890	29.636152	2.1913	11.5320	47.914	77.719	7.1	14.281	0.058	0	13.663	0.074	0	12.965	0.076	0	17.64	16.92	19.30
BSC2142 BSC2143 229.840363 59.139984 1.2816 -42.6591 94.802 49.122 7.0 13.940 0.038 0 13.109 0.040 0 12.377 0.044 0 16.94 16.22 18.94 BSC2144 30.109873 2.669564 1.7695 36.0689 154.802 -55.873 10.9 12.992 0.036 0 13.261 0.047 0 11.620 0.048 0 16.78 15.83 18.36 BSC2145 BSC2146 BSC2147 216.627640 39.062035 2.7401 83.1635 70.047 66.893 7.0 14.030 0.041 0 13.186 0.042 0 12.526 0.054 0 17.26 16.41 19.06 BSC2148 5.904937 4.706235 1.9240 41.2682 109.966 -57.463 8.2 13.896 0.051 0 13.111 0.061 0 12.484 0.067 0 17.09 16.19 18.96 BSC2149 160.182953 33.016373 1.9460 3.2280 193.119 61.237 6.8 14.299 0.054 0 13.752 0.071 0 12.899 0.065 0 17.63 16.84 19.28 BSC2150 BSC2151 BSC2153 55.309780 4.890277 2.1998 90.0750 181.494 -37.983 5.9 14.047 0.057 0 12.803 0.058 0 12.196 0.066 0 16.95 16.13 18.65 BSC2145 1.940 112.3761 101.888 -52.192 8.4 13.509 0.047 0 12.803 0.058 0 12.196 0.066 0 16.95 16.13 18.65 BSC2153 55.309780 4.890277 2.1998 90.0750 181.494 -37.983 5.9 14.047 0.057 0 13.293 0.058 0 12.266 0.054 0 16.93 16.11 19.01	BSC2141	164.482285	19.256365	3.0041	-14.0776	223.688	62.825	7.3	14.755	0.065	0	14.057	0.088	0	13.420	0.073	0	18.16	17.31	19.71
BSC2143 229.840363 59.139984 1.2816 -42.6591 94.802 49.122 7.0 13.940 0.038 0 13.109 0.040 0 12.377 0.044 0 16.94 16.22 18.94 BSC2144 30.109873 2.669564 1.7695 36.0689 154.802 -55.873 10.9 12.992 0.036 0 12.261 0.047 0 11.620 0.048 0 16.78 15.83 18.36 BSC2145 BSC2147 216.627640 39.062035 2.7401 83.1635 70.047 66.893 7.0 14.030 0.041 0 13.186 0.042 0 12.526 0.054 0 17.26 16.41 19.06 BSC2148 5.904937 4.706235 1.9240 41.2682 199.966 -57.463 8.2 13.896 0.051 0 13.111 0.061 0 12.484 0.067 0 17.63 16.84 19.28 BSC2149 160.182953 33.016373 1.9460 3.2280 193.119 61.237 6.8 14.299 0.054	BSC2142																			
BSC2144 30.109873 2.669564 1.7695 36.0689 154.802 -55.873 10.9 12.992 0.036 0 12.261 0.047 0 11.620 0.048 0 16.78 15.83 18.36 BSC2145 BSC2146 BSC2147 216.627640 39.062035 2.7401 83.1635 70.047 66.893 7.0 14.030 0.041 0 13.186 0.042 0 12.526 0.054 0 17.26 16.41 19.06 BSC2148 5.904937 4.706235 1.9240 41.2682 109.966 -57.463 8.2 13.896 0.051 0 13.111 0.061 0 12.484 0.067 0 17.09 16.19 18.96 BSC2150 BSC2151 BSC2152 359.997101 8.565101 1.6719 112.3761 101.888 -52.192 8.4 13.509 0.047 0 12.803 0.058 0 12.196 0.066 0 16.95 16.11 19.01 BSC2152 359.997101 8.565101 1.6719 112.3761 101.888 -52	BSC2143	229.840363	59.139984	1.2816	-42.6591	94.802	49.122	7.0	13.940	0.038	0	13.109	0.040	0	12.377	0.044	0	16.94	16.22	18.94
BSC2145 BSC2147 BSC2147 BSC2147 216.627640 BSC2148 S.904937 4.706235 BSC2148 S.904937 4.706235 BSC2149 160.182953 33.016373 1.9460 S.2280 BSC2150 BSC2150 BSC2151 BSC2152 BSC2152 BSC2152 BSC2152 BSC2153 S.5309780 4.890277 2.1998 90.0750 181.494 S.2701 BSC2153 BSC2154 BSC2154 BSC2155 BSC	BSC2144	30.109873	2.669564	1.7695	36.0689	154.802	-55.873	10.9	12.992	0.036	0	12.261	0.047	0	11.620	0.048	0	16.78	15.83	18.36
BSC2146 BSC2147 216.627640 39.062035 2.7401 83.1635 70.047 66.893 7.0 14.030 0.041 0 13.186 0.042 0 12.526 0.054 0 17.26 16.41 19.06 BSC2148 5.904937 4.706235 1.9240 41.2682 109.966 -57.463 8.2 13.896 0.051 0 13.111 0.061 0 12.484 0.067 0 17.09 16.19 18.96 BSC2149 160.182953 33.016373 1.9460 3.2280 193.119 61.237 6.8 14.299 0.054 0 13.752 0.071 0 12.899 0.065 0 17.63 16.84 19.28 BSC2150 BSC2151 BSC2152 359.997101 8.565101 1.6719 112.3761 101.888 -52.192 8.4 13.509 0.047 0 12.803 0.058 0 12.196 0.066 0 16.95 16.13 18.65 BSC2153 55.309780 4.890277 2.1998 90.0750 181.494 -37.983 5.9 14.047 0.057 0 13.293 0.058 0 12.276 0.054 0 16.93 16.11 19.01 Fortsetzung nächste Seite	BSC2145																			
BSC2147 216.627640 39.062035 2.7401 83.1635 70.047 66.893 7.0 14.030 0.041 0 13.186 0.042 0 12.526 0.054 0 17.26 16.41 19.06 BSC2148 5.904937 4.706235 1.9240 41.2682 109.966 -57.463 8.2 13.896 0.051 0 13.111 0.061 0 12.844 0.067 0 17.09 16.19 18.96 BSC2149 160.182953 33.016373 1.9460 3.2280 193.119 61.237 6.8 14.299 0.054 0 13.752 0.071 0 12.899 0.065 0 17.63 16.84 19.28 BSC2150 BSC2151 BSC2151 1.6719 112.3761 101.888 -52.192 8.4 13.509 0.047 0 12.803 0.056 0 16.95 16.13 18.65 BSC2152 359.997101 8.565101 1.6719 112.3761 101.888 -52.192 8.4 13.509 0.047 0 12.803 0.058 0 <t< td=""><td>BSC2146</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	BSC2146																			
BSC2148 5.904937 4.706235 1.9240 41.2682 109.966 -57.463 8.2 13.896 0.051 0 13.111 0.061 0 12.484 0.067 0 17.09 16.19 18.96 BSC2149 160.182953 33.016373 1.9460 3.2280 193.119 61.237 6.8 14.299 0.054 0 13.752 0.071 0 12.899 0.065 0 17.63 16.84 19.28 BSC2150 BSC2151 BSC2152 359.997101 8.565101 1.6719 112.3761 101.888 -52.192 8.4 13.509 0.047 0 12.803 0.058 0 12.196 0.066 0 16.95 16.13 18.65 BSC2153 55.309780 4.890277 2.1998 90.0750 181.494 -37.983 5.9 14.047 0.057 0 13.293 0.058 0 12.276 0.054 0 16.93 16.11 19.01 BSC2153 55.309780 4.890277 2.1998 90.0750 181.494 -37.983 5.9 14.047 <td>BSC2147</td> <td>216.627640</td> <td>39.062035</td> <td>2.7401</td> <td>83.1635</td> <td>70.047</td> <td>66.893</td> <td>7.0</td> <td>14.030</td> <td>0.041</td> <td>0</td> <td>13.186</td> <td>0.042</td> <td>0</td> <td>12.526</td> <td>0.054</td> <td>0</td> <td>17.26</td> <td>16.41</td> <td>19.06</td>	BSC2147	216.627640	39.062035	2.7401	83.1635	70.047	66.893	7.0	14.030	0.041	0	13.186	0.042	0	12.526	0.054	0	17.26	16.41	19.06
BSC2149 160.182953 33.016373 1.9460 3.2280 193.119 61.237 6.8 14.299 0.054 0 13.752 0.071 0 12.899 0.065 0 17.63 16.84 19.28 BSC2150 BSC2151 BSC2152 359.997101 8.565101 1.6719 112.3761 101.888 -52.192 8.4 13.509 0.047 0 12.803 0.058 0 12.196 0.066 0 16.95 16.13 18.65 BSC2153 55.309780 4.890277 2.1998 90.0750 181.494 -37.983 5.9 14.047 0.057 0 13.293 0.058 0 12.276 0.054 0 16.93 16.11 19.01 BSC2153 55.309780 4.890277 2.1998 90.0750 181.494 -37.983 5.9 14.047 0.057 0 13.293 0.058 0 12.276 0.054 0 16.93 16.11 19.01 Fortsetzung nächste Seite	BSC2148	5.904937	4.706235	1.9240	41.2682	109.966	-57.463	8.2	13.896	0.051	0	13.111	0.061	0	12.484	0.067	0	17.09	16.19	18.96
BSC2150 BSC2151 BSC2152 359.997101 8.565101 1.6719 112.3761 101.888 -52.192 8.4 13.509 0.047 0 12.803 0.058 0 12.196 0.066 0 16.95 16.13 18.65 BSC2153 55.309780 4.890277 2.1998 90.0750 181.494 -37.983 5.9 14.047 0.057 0 13.293 0.058 0 12.276 0.054 0 16.93 16.11 19.01 Fortsetzung nächste Seite	BSC2149	160.182953	33.016373	1.9460	3.2280	193.119	61.237	6.8	14.299	0.054	0	13.752	0.071	0	12.899	0.065	0	17.63	16.84	19.28
BSC2151 BSC2152 359.997101 8.565101 1.6719 112.3761 101.888 -52.192 8.4 13.509 0.047 0 12.803 0.058 0 12.196 0.066 0 16.95 16.13 18.65 BSC2153 55.309780 4.890277 2.1998 90.0750 181.494 -37.983 5.9 14.047 0.057 0 13.293 0.058 0 12.276 0.054 0 16.93 16.11 19.01 Fortsetzung nächste Seite	BSC2150																			
BSC2152 359.997101 8.565101 1.6719 112.3761 101.888 -52.192 8.4 13.509 0.047 0 12.803 0.058 0 12.196 0.066 0 16.95 16.13 18.65 BSC2153 55.309780 4.890277 2.1998 90.0750 181.494 -37.983 5.9 14.047 0.057 0 13.293 0.058 0 12.276 0.054 0 16.93 16.11 19.01 Fortsetzung nächste Seite	BSC2151																			
BSC2153 55.309780 4.890277 2.1998 90.0750 181.494 -37.983 5.9 14.047 0.057 0 13.293 0.058 0 12.276 0.054 0 16.93 16.11 19.01 Fortsetzung nächste Seite	BSC2152	359.997101	8.565101	1.6719	112.3761	101.888	-52.192	8.4	13.509	0.047	0	12.803	0.058	0	12.196	0.066	0	16.95	16.13	18.65
Fortsetzung nächste Seite	BSC2153	55.309780	4.890277	2.1998	90.0750	181.494	-37.983	5.9	14.047	0.057	0	13.293	0.058	0	12.276	0.054	0	16.93	16.11	19.01
																Fort	setz	ung nä	ichste	Seite

Fortsetzung	von	vorheriger	Seite
roruseulung	von	vorneriger	DELLE

1010500	Zung von	vornerigei																	
BSC	α	δ	Dist	Ori	glon	glat	r_{k20}	jk20	dj _{k20}	jf	h_{k20}	dh_{k20}	hf	k_{k20}	dk_{k20}	kf	jpeak	hpeak	kpeak
BSC2154	217.277313	1.285129	2.5548	-15.2741	349.218	55.125	8.5	12.780	0.024	0	11.932	0.023	0	11.013	0.027	0	15.77	14.84	17.80
BSC2155	239 178497	29.813236	1,9254	70.2876	48.026	49 466	67	13 466	0.035	0	12 685	0.038	0	12.067	0.050	0	16 79	15 97	18 48
BSC2157	244 178238	4 208012	0 9099	-22 0883	17 227	36.029	83	13 499	0.042	ŏ	12.650	0.047	õ	11 721	0.045	ŏ	16 59	15.56	18 55
DCC2157	244.170250	4.200012	0.3033	-22.0000	11.221	30.023	0.0	10.433	0.042	0	12.000	0.047	0	11.721	0.045	0	10.55	10.00	10.00
BSC2158										-									
BSC2159	258.548248	57.976028	2.2434	97.6627	86.513	35.513	5.4	14.197	0.048	0	13.368	0.050	0	12.823	0.062	0	17.27	16.45	19.15
BSC2160	322.720337	4.041667	19.0821	-174.6408	57.760	-32.470	5.0	14.417	0.054	0	13.751	0.067	0	13.068	0.068	0	17.28	16.59	19.34
BSC2161	164.612869	22.592712	2.1479	34.8207	216.722	64.030	7.0	14.270	0.050	0	13.527	0.062	0	12.832	0.056	0	17.48	16.64	19.27
BSC2162	172 621490	49 582840	1 3461	24 5915	152 199	62 693	7 9	13 805	0.040	3	13 021	0.046	3	12 567	0.053	3	17 47	16.67	18.92
DSC2102	42 651594	15 400004	1.0690	62.0102	161 704	28,000	6.9	14 199	0.059	2	12 401	0.071	2	10.650	0.065	2	17.02	16.47	10.19
DSC2103	45.051524	13.429024	1.0080	02.9102	101.704	-38.000	0.8	14.162	0.058	3	13.491	0.071	3	12.052	0.065	3	17.23	10.47	19.18
BSC2164	211.591309	22.396170	1.7686	116.4597	21.477	72.365	5.0	14.562	0.050	0	13.799	0.059	0	13.016	0.054	0	17.59	16.74	19.49
BSC2165	19.225142	25.824614	2.7580	-18.8299	130.082	-36.693	5.4	14.152	0.045	0	13.253	0.046	0	12.302	0.045	0	17.11	16.13	19.11
BSC2166																			
BSC2167	122.707207	76.030884	58.0019	-145.5110	138.297	31.027	7.0	14.421	0.069	0	13.770	0.093	0	13.230	0.094	0	18.16	17.44	19.51
BSC2168						02.02.			0.000			0.000			0.00-				
DSC2100	171 010000	10 155510	1 0100	C4 179C	020 000	CO 110	0.5	19 540	0.024	0	10.000	0.049	0	10,200	0.040	0	10.00	10.00	10.05
BSC2169	1/1.818008	19.155510	1.9192	64.1786	230.899	69.112	9.5	13.548	0.034	0	12.880	0.043	0	12.300	0.046	0	16.99	16.20	18.05
BSC2170	169.513580	45.112885	0.7508	-144.8839	162.778	64.121	8.8	13.474	0.038	0	12.744	0.046	0	12.317	0.053	0	17.22	16.44	18.61
BSC2171	204.328064	24.384159	2.7038	43.1542	20.603	79.317	6.8	12.704	0.020	0	11.684	0.021	0	10.455	0.016	0	-1	-1	-1
BSC2172	173.593689	4.190949	0.4706	-27.7361	260.837	60.601	8.8	13.874	0.064	5	13.116	0.069	4	12.385	0.081	5	17.30	16.47	18.99
BSC2173	225 883942	29.840014	2.1718	61.0725	46 170	60.945	67	14 382	0.056	0	13 626	0.062	0	13 082	0.075	0	1774	16.92	19.34
DSC2170	2201000012	201010011	2.11.10	0110120	101110	001010	0	11.002	0.000	0	10.010	0.002	Ŭ	10.002	0.010	Ŭ	11	10.01	10101
DSC2174																			
BSC2175																			
BSC2176																			
BSC2177																			
BSC2178	137.541870	48.228306	1.7388	58.7729	171.067	42.644	6.1	14.453	0.060	0	13.677	0.070	0	12.668	0.056	0	17.62	16.74	19.45
BSC2179																			
DSC2110	120 072801	55 265654	22 6195	24.0660	161 122	19 974	5.0	15 752	0.194	2	14 999	0.126	2	14.957	0.125	2	18 01	18.01	20.60
D3C2180	139.973801	00.001400	23.0105	-34.9009	101.133	42.074	5.0	10.700	0.134	3	14.003	0.130	3	14.207	0.135	3	18.91	10.01	20.09
BSC2181	206.086853	66.621468	1.1687	-127.7382	114.867	49.670	7.3	14.295	0.052	0	13.543	0.053	0	12.907	0.061	0	17.70	16.99	19.29
BSC2182	243.488434	65.719353	1.5367	64.1229	98.269	40.376	10.8	12.782	0.029	0	12.039	0.037	0	11.136	0.030	0	16.00	15.25	17.93
BSC2183	144.368912	32.763531	1.8771	-24.2528	193.067	47.967	7.7	14.296	0.057	0	13.407	0.058	0	12.694	0.061	0	17.77	16.75	19.30
BSC2184	231.494019	18.237883	2.7199	59.5403	27.177	53.417	5.7	14.586	0.051	0	13.789	0.047	0	13.069	0.064	0	17.65	16.84	19.49
BSC2185	167 337006	71 711250	9.0644	34 1655	133 627	43 234	6.0	14 789	0.074	3	14 036	0.080	3	13 361	0.082	3	18 37	17 47	19.75
DSC2100	146 716552	12 240500	24.0916	15 5920	201.000	44.947	0.0	14.000	0.074	0	14.000	0.000	0	12 5 49	0.002	0	10.07	17.76	20.07
DSC2180	140.710555	15.540508	54.0810	-15.5829	221.208	44.847	8.0	14.900	0.076	0	14.077	0.090	0	15.542	0.081	0	18.55	17.70	20.07
BSC2187																			
BSC2188	131.188461	76.885941	2.6673	-58.6558	136.658	32.678	7.7	14.340	0.088	0	13.681	0.117	0	12.716	0.086	0	17.86	17.05	19.41
BSC2189																			
BSC2190																			
BSC2101																			
DSC2101	146 999951	10.085026	2 9125	59 9797	225 272	42 540	0.2	14 590	0 1 1 1	0	12 720	0.001	0	12 609	0.000	0	17 91	16.99	10.64
D3C2192	140.000331	10.085920	3.8135	52.2121	220.010	43.340	9.2	14.560	0.111	0	13.729	0.091	0	12.098	0.099	0	17.01	10.82	19.04
BSC2193																			
BSC2194																			
BSC2195																			
BSC2196																			
BSC2197																			
DSC2131																			
BSC2198										-									
BSC2199	197.434570	8.334538	42.9513	-69.0787	316.756	70.713	5.1	14.837	0.073	0	14.105	0.077	0	13.816	0.127	0	17.95	17.17	19.75
BSC2200	120.383316	47.604309	1.5129	-1.5905	171.640	31.160	6.9	14.085	0.064	0	13.376	0.069	0	12.332	0.056	0	17.37	16.60	19.09
BSC2201	187.278122	2.052330	1.5724	28.0163	289.952	64.360	8.1	11.726	0.017	0	11.006	0.017	0	9.942	0.017	0	-1	-1	-1
BSC2202																			
DSC2202	20.050270	0.204647	0 0024	50.0250	156 569	57.020	11.4	12 540	0.052	0	10 770	0.066	0	11 201	0.052	0	16 50	15 71	10 71
BSC2203	29.959570	0.394047	2.8234	32.2332	150.508	-57.959	11.4	15.549	0.055	0	12.770	0.000	0	11.801	0.052	0	10.59	15.71	10.71
BSC2204																			
BSC2205																			
BSC2206																			
BSC2207																			
BSC2208	244 242874	64 645172	2.5678	-50 9039	96 813	40.535	54	15.038	0.091	0	14 045	0.083	0	13 192	0.075	0	18 19	17.28	20.00
BSC2200	148 515915	66 139046	0 7469	-40 7808	145 450	42 414	5.0	15.374	0 1 20	ŏ	_1	-1	_1	14 171	0 145	õ	18 29	_1	20.26
1002209	140.010310	00.100040	0.1409	-40.1008	140.400	42.414	0.0	10.014	0.140	0	-1	-1	-1	14.171	0.140		10.23		20.20
															Fort	setz	ung na	acnste	Seite

-	1 1 1			•	(1 •)
	ontootounor	77010	TTO 12	on mon	N oito
	OF SPLZINDU	VINI	VINT	Tertoer	Selle.
т	or usculuting	VOII	1011		DUIUC

DCC DCC	Juing von	vormerige	Dist	0	-1	-1-4		2.		: £	b .	11.	b . £	1	-11-	1.£		L .	1-
BSC	α	0	Dist	Ori	gion	giat	rk20	Jk20	dJk20	JI	nk20	dnk20	m	Kk20	ark20	KI	Jpeak	npeak	Kpeak
BSC2210	174.408386	10.658283	0.2599	134.1634	252.877	66.065	5.9	14.921	0.107	0	14.263	0.126	0	13.060	0.095	0	17.95	17.15	19.88
BSC2211																			
BSC2212																			
BSC2213	169.778015	21.308119	55.3733	-151.7353	223.388	68.198	5.0	15.610	0.123	0	-1	-1	-1	14.516	0.173	0	19.10	-1	20.46
BSC2214																			
BSC2215																			
BSC2216	152.685364	0.725521	0.8958	-12.2257	240.524	43.294	6.0	14.544	0.065	0	13.879	0.066	0	12.910	0.066	0	17.51	16.67	19.49
BSC2217																			
BSC2218	153 728760	0.560432	1 5556	1 3260	241 596	44 011	78	14 286	0.065	0	13 604	0.069	0	12 653	0.070	0	17 46	16 72	19.25
BSC2219	141 479507	19 898705	11.0605	150 8753	210 181	42 650	73	15 396	0.113	1	14 641	0.156	1	14 160	0.142	ĩ	19.01	18 37	20.35
BSC2220	187 376038	45 227421	16 5500	87 5102	135.008	71 370	5.0	15 401	0.143	Ô	1 1.0 11	1	1	14 045	0.152	Ô	18.07	10.01	20.30
DSC2220	246 520210	22 087622	2.6476	56 0424	55 200	42 705	5.0	14.670	0.145	0	12 780	-1	-1	12 801	0.152	0	17.65	16.62	10.61
DGC2221	240.030319	33.387033	2.0470	50.0424	55.200	43.795	5.0	14.070	0.052	0	13.769	0.055	0	12.801	0.045	0	17.05	10.05	19.01
DSC2222	147 701500	20 447207	1 2000	7 7007	100.040	50 745	6.0	14 5 7 7	0.040		19.097	0.051		10.075	0.047		17 64	10 70	10 50
BSC2223	147.701599	39.447327	1.3902	-7.7807	182.849	50.745	6.0	14.577	0.049	3	13.837	0.051	3	12.075	0.047	3	17.64	16.70	19.52
BSC2224																			
BSC2225																			
BSC2226	216.555496	19.923464	1.2584	-114.8853	19.638	67.155	5.5	14.649	0.078	0	13.508	0.071	0	12.642	0.063	0	17.43	16.33	19.62
BSC2227																			
BSC2228																			
BSC2229	197.078735	3.743765	1.5104	107.1763	313.444	66.270	5.4	15.491	0.153	0	14.702	0.165	0	13.566	0.114	0	18.24	17.59	20.45
BSC2230																			
BSC2231																			
BSC2232																			
BSC2233	220.760925	40.756878	1.5811	61.2424	70.815	63.313	5.0	15.295	0.089	0	14.609	0.108	0	13.673	0.090	0	18.34	17.57	20.21
BSC2234																			
BSC2235																			
BSC2236																			
BSC2230																			
DSC2237																			
DSC2238	996 021419	20.971222	9 6 4 9 1	47 9159	22 000	40.457	E C	14 624	0.072	0	12 000	0.100	0	12 0 4 9	0.071	0	17 51	16 79	10.60
DSC2239	230.931412	20.871332	2.0481	47.3133	33.696	49.457	5.0	14.034	0.075	0	15.990	0.100	0	15.048	0.071	0	17.51	10.78	19.00
BSC2240																			
BSC2241																			
BSC2242																			
BSC2243																			
BSC2244																			
BSC2245	142.186844	60.429363	57.9222	62.5304	154.087	42.449	5.0	15.579	0.121	0	14.903	0.149	0	14.388	0.162	0	18.74	18.04	20.51
BSC2246																			
BSC2247																			
BSC2248	216.231262	42.235508	2.1232	-30.5335	77.402	65.696	5.0	15.384	0.122	0	14.504	0.132	0	13.689	0.097	0	18.20	17.51	20.33
BSC2249																			
BSC2250																			
BSC2251																			
BSC2252																			
BSC2253																			
BSC2254																			
BSC2255																			
DSC2200																			
DSC2250																			
BSC2257																			
BSC2258																			
BSC2259																			
BSC2260				÷															
BSC2261	keine	weiteren	AGN	nach-															
BSC2262				gewiesen															

BSC	ccf	j5	dj_5	j5f	h_5	dh_5	$h_5 f$	k_5	dk_5	$k_5 f$	IDcat	XSC No	PSC key
BSC2044	0	11.654	0.005	0	10.958	0.006	0	10.680	0.007	0	NGC 4639	1861629	939455458
BSC2045	\mathbf{Z}	-1	-1	1	-1	-1	1	-1	-1	1	M106	5000012	-1
BSC2046	\mathbf{Z}	-1	-1	1	-1	-1	1	-1	-1	1	NGC4051	5000173	-1
BSC2047	\mathbf{Z}	-1	-1	1	-1	-1	1	-1	-1	1	NGC5033	5000153	-1
BSC2048	\mathbf{Z}	-1	-1	1	-1	-1	1	-1	-1	1	NGC4151	5000255	-1
BSC2049	\mathbf{Z}	-1	-1	1	-1	-1	1	-1	-1	1	NGC3227	5000232	-1
BSC2050	\mathbf{Z}	-1	-1	1	-1	-1	1	-1	-1	1	NGC3516	5000463	-1
BSC2051	0	11.711	0.004	0	10.955	0.005	0	10.635	0.005	0	NGC 3798	447932	189695667
BSC2052	0	12.130	0.006	0	11.283	0.007	0	10.484	0.005	0	NGC 4253	2431953	1230014819
BSC2053	0	13.157	0.015	0	12.444	0.022	0	11.975	0.019	0	MRK 0352	1665828	824152430
BSC2054	0	11.763	0.005	0	11.098	0.006	0	10.772	0.006	0	NGC 7679	2175478	1097921447
BSC2055	\mathbf{Z}	-1	-1	1	-1	-1	1	-1	-1	1	NGC 7469	5000488	-1
BSC2056	0	11.686	0.004	0	10.841	0.004	0	10.064	0.003	0	NGC 5548	1287719	612944935
BSC2057	0	12.123	0.006	0	11.407	0.006	0	11.022	0.009	0	UGC 01214	2277748	1149399843
BSC2058	0	12.317	0.007	0	11.527	0.009	0	11.032	0.008	0	UGC 01032	1665379	824043099
BSC2059	0	13.903	0.027	0	13.104	0.035	0	12.745	0.035	0	IC 3599	2093715	1054053358
BSC2060	0	13.390	0.022	0	12.704	0.022	0	12.363	0.036	0	-1	1720545	855493478
BSC2061	0	11.596	0.004	0	10.856	0.005	0	10.510	0.005	0	NGC 6251	1267187	588202071
BSC2062	\mathbf{Z}	-1	-1	1	-1	-1	1	-1	-1	1	MRK335	5000520	-1
BSC2063	0	12.918	0.013	0	12.155	0.016	0	11.715	0.018	0	-1	1963316	1000875392
BSC2064	0	12.454	0.008	0	11.740	0.010	0	11.353	0.011	0	-1	417887	176050574
BSC2065	0	12.567	0.009	0	11.835	0.010	0	11.529	0.014	0	-1	1430122	687202442
BSC2066	0	12.894	0.012	0	12.147	0.014	0	11.804	0.016	0	-1	2174499	1097708239
BSC2067	0	12.607	0.009	0	11.774	0.010	0	11.119	0.009	0	UGC 05025	297034	136306362
BSC2068	0	13.682	0.023	0	13.011	0.028	0	12.634	0.036	0	-1	589379	226412745
BSC2069	0	13.253	0.017	0	12.460	0.024	0	12.010	0.022	0	-1	2160418	1091534670
BSC2070	0	12.509	0.008	0	11.563	0.009	0	10.650	0.006	0	MRK 0704	296354	136154695
BSC2071	0	11.649	0.004	0	10.778	0.004	0	10.015	0.003	0	NGC 7603	2191307	1104055170
BSC2072	0	12.843	0.011	0	12.119	0.014	0	11.704	0.015	0	UGC 04013	1575096	760619126
BSC2073	0	13.338	0.017	3	12.675	0.022	3	11.995	0.021	3	-1	1396883	671140150
BSC2074	0	13.368	0.019	0	12.646	0.022	0	12.285	0.031	0	-1	1452580	695525053
BSC2075	0	13.850	0.031	0	13.154	0.038	0	12.648	0.039	0	-1	1331028	636390457
BSC2076	0	12.087	0.006	0	11.220	0.005	0	10.407	0.005	0	UGC 08823	1243967	582393614
BSC2077	Õ	12.667	0.009	Õ	11.888	0.011	Õ	11.502	0.014	Õ	IC 1854	163643	89330894
BSC2078	Õ	13.216	0.016	Ő	12.346	0.018	Ő	11.716	0.013	Õ	-1	2020734	1026619943
BSC2079	Ő	13.505	0.021	õ	12.754	0.025	õ	12.189	0.024	Õ	-1	1362887	648684915
BSC2080	õ	12.458	0.008	õ	11.552	0.008	õ	10.725	0.006	õ	UGC 09412	2006906	1020524039
BSC2081	õ	12.687	0.009	õ	11.847	0.012	õ	11.141	0.009	õ	CGCG 121-075	2496620	1267992793
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~		0.000				~		0.000	~	Fortset	zung nä	chste Seite

Tabelle A.10: XSC-Informationen des BSC-AGN-Datensatzes / Teil2

BSC	ccf	j5	dj ₅	j5f	h_5	dh_5	$h_5 f$	k_5	dk_5	$k_5 f$	IDcat	XSC No	PSC key
BSC2082	0	13.861	0.030	0	13.136	0.040	0	12.484	0.030	0	KUG 1136+342	2092978	1053899636
BSC2083	0	13.225	0.019	0	12.404	0.018	0	11.691	0.019	0	UM 614	1743798	866975302
BSC2084	0	13.649	0.024	0	12.789	0.026	0	12.117	0.021	0	-1	2521383	1284243806
BSC2085	0	13.393	0.019	0	12.617	0.022	0	11.993	0.021	0	-1	1627753	800837315
BSC2086	0	13.074	0.013	0	12.359	0.015	0	12.063	0.017	0	-1	2022064	1026913626
BSC2087	0	13.225	0.014	0	12.467	0.019	0	11.994	0.018	0	NGC 3080	1851840	933662880
BSC2088	0	13.592	0.021	3	12.849	0.030	3	12.055	0.022	3	PG 0921+525	1609379	783924768
BSC2089	0	13.515	0.026	0	12.714	0.029	0	12.159	0.031	0	MRK 0728	1683214	838492458
BSC2090	0	12.698	0.010	0	11.967	0.011	0	11.570	0.014	0	UGC 00524	219117	109669258
BSC2091	0	12.844	0.012	0	12.145	0.016	0	11.376	0.014	0	-1	2453735	1243313466
BSC2092	0	13.533	0.022	0	12.780	0.029	0	12.248	0.028	0	-1	2034713	1030917207
BSC2093	0	13.715	0.023	0	13.023	0.027	0	12.629	0.033	0	-1	1199798	568770076
BSC2094	0	12.678	0.009	0	11.896	0.010	0	11.435	0.012	0	-1	154029	83905367
BSC2095	0	13.668	0.027	0	12.849	0.031	0	12.421	0.031	0	-1	1964410	1001306067
BSC2096	0	13.086	0.017	0	12.290	0.021	0	11.751	0.019	0	-1	1823842	911287970
BSC2097	0	13.500	0.022	0	12.759	0.027	0	12.244	0.026	0	PG 2304+042	2226278	1122382066
BSC2098	0	13.725	0.021	0	12.960	0.028	0	12.350	0.024	0	-1	525548	210769500
BSC2099	0	13.130	0.017	0	12.402	0.019	0	11.965	0.024	0	MRK 0845	1413735	680379276
BSC2100	0	13.314	0.020	0	12.710	0.031	0	12.223	0.028	0	-1	1242379	582002623
BSC2101	0	14.004	0.048	0	13.256	0.051	0	12.552	0.045	0	-1	1597638	778391851
BSC2102													
BSC2103	0	13.946	0.029	0	13.162	0.033	0	12.507	0.031	0	-1	1028641	479191884
BSC2104	0	12.835	0.010	0	12.114	0.012	0	11.560	0.012	0	PG 1428+285	1260564	586673408
BSC2105	0	13.648	0.020	0	12.908	0.024	0	12.325	0.023	0	-1	482829	200573828
BSC2106	0	13.306	0.021	0	12.538	0.021	0	11.908	0.025	0	PG 1119+120	2404864	1215893220
BSC2107	0	14.276	0.046	0	13.524	0.046	0	13.080	0.066	0	PG 0934+013	1594714	776632175
BSC2108	0	13.617	0.027	0	12.841	0.030	0	12.325	0.028	0	-1	2085151	1051862608
BSC2109	0	13.484	0.021	0	12.709	0.028	0	12.166	0.023	0	-1	1881303	955979882
BSC2110	0	13.442	0.018	0	12.683	0.021	0	12.315	0.023	0	-1	1867362	941329433
BSC2111	0	13.887	0.026	0	13.059	0.031	0	12.373	0.024	0	-1	496779	203542678
BSC2112	0	14.582	0.039	0	13.837	0.041	0	13.182	0.043	0	-1	446450	189433476
BSC2113	\mathbf{Z}	-1	-1	1	-1	-1	1	-1	-1	1	UGC545	5000525	-1
BSC2115													
BSC2116													
BSC2117	0	14.116	0.032	0	13.413	0.039	0	13.047	0.048	0	-1	2131439	1074272346
BSC2118	0	14.125	0.033	0	13.439	0.041	0	12.667	0.037	0	-1	667953	260138571
BSC2119	0	13.457	0.020	0	12.636	0.026	0	11.929	0.019	0	-1	2120431	1067824077
BSC2120													
BSC2121	0	15.168	0.092	0	14.565	0.138	0	14.059	0.130	0	-1	450369	190208805

Fortsetzung von vorheriger Seite

Fortsetzung von vorheriger Seite

BSC	ccf		dj5	j5f	- h5	dh_5	$h_5 f$	k_5	dk_5	$k_5 f$	IDcat	XSC No	PSC key
BSC2122	0	13.396	0.016	0	12.657	0.019	0	12.020	0.017	0	-1	284740	131281487
BSC2123	0	12.685	0.011	0	11.970	0.014	0	11.487	0.013	0	-1	1699617	846701200
BSC2124													
BSC2125	0	13.509	0.022	0	12.827	0.026	0	12.011	0.021	0	-1	1449138	694625518
BSC2126	0	14.351	0.052	0	13.608	0.069	0	12.685	0.045	0	-1	2166321	-1
BSC2127	0	13.791	0.024	0	13.004	0.030	0	12.489	0.027	0	MRK 0634	350407	151697122
BSC2128	0	13.705	0.025	0	12.978	0.029	0	12.444	0.030	0	-1	1363927	648860350
BSC2129	0	14.217	0.030	0	13.532	0.039	0	12.876	0.037	0	-1	361748	153872163
BSC2130	0	14.522	0.048	0	13.871	0.071	0	13.211	0.057	0	-1	628999	241577016
BSC2131	0	14.063	0.040	0	13.449	0.051	0	12.769	0.052	0	-1	1684185	838762229
BSC2132	0	13.499	0.021	0	12.646	0.023	0	11.966	0.020	0	-1	2238113	1127197103
BSC2133	0	13.662	0.022	0	12.900	0.031	0	12.241	0.025	0	-1	1706021	849956542
BSC2134	0	14.437	0.048	0	13.595	0.047	0	12.872	0.049	0	-1	1471831	701864935
BSC2135													
BSC2136	0	14.086	0.035	0	13.299	0.038	0	12.748	0.042	0	-1	1449452	694695034
BSC2137	0	13.971	0.027	0	13.165	0.031	0	12.540	0.026	0	-1	1774060	880657974
BSC2138	0	14.731	0.060	0	14.091	0.083	0	13.424	0.072	0	-1	2113458	1064028959
BSC2139	0	14.119	0.035	0	13.357	0.051	0	12.758	0.037	0	-1	1760301	874301503
BSC2140	0	14.397	0.047	0	13.755	0.063	0	13.032	0.055	0	-1	1337424	638439897
BSC2141	0	14.796	0.059	0	14.138	0.086	0	13.467	0.067	0	-1	350388	151695221
BSC2142													
BSC2143	0	14.011	0.028	0	13.195	0.030	0	12.410	0.026	0	-1	1312288	620825634
BSC2144	0	13.475	0.020	0	12.663	0.023	0	11.938	0.018	0	-1	2176817	1098212644
BSC2145													
BSC2146													
BSC2147	0	14.134	0.029	0	13.292	0.030	0	12.626	0.032	0	-1	564105	218901903
BSC2148	0	14.030	0.034	0	13.250	0.041	0	12.641	0.040	0	-1	2270112	1145975915
BSC2149	0	14.375	0.043	0	13.756	0.060	0	12.956	0.047	0	-1	652436	252872530
BSC2150													
BSC2151													
BSC2152	0	13.743	0.029	0	13.003	0.034	0	12.348	0.032	0	-1	2309157	1168611458
BSC2153	0	14.065	0.045	0	13.311	0.048	0	12.291	0.034	0	-1	1609438	783946747
BSC2154	0	12.861	0.013	0	12.016	0.011	0	11.064	0.010	0	PG 1426+015	2477213	1259029691
BSC2155	0	13.552	0.022	0	12.777	0.023	0	12.145	0.026	0	-1	1471671	701846300
BSC2157	0	13.626	0.026	0	12.732	0.027	0	11.785	0.020	0	-1	2233007	1125293818
BSC2158													
BSC2159	0	14.210	0.041	0	13.373	0.042	0	12.829	0.047	0	-1	1334558	637311261
BSC2160	0	14.419	0.048	0	13.752	0.066	0	13.069	0.058	0	-1	2071058	1047725252
BSC2161	0	14.352	0.039	0	13.585	0.050	0	12.881	0.039	0	-1	350462	151704633

103

BSC	ccf	j5	dj ₅	j ₅ f	h_5	dh_5	$h_5 f$	k_5	dk_5	$k_5 f$	IDcat	XSC No	PSC key
BSC2162	0	14.025	0.029	3	13.221	0.032	3	12.740	0.033	3	-1	1171623	561258557
BSC2163	0	14.246	0.042	0	13.539	0.053	0	12.734	0.041	0	-1	1626770	800700695
BSC2164	0	14.562	0.046	0	13.799	0.058	0	13.017	0.045	0	-1	682937	267159841
BSC2165	0	14.170	0.037	0	13.268	0.038	0	12.310	0.028	0	-1	225074	111433580
BSC2166													
BSC2167	0	14.625	0.058	0	13.962	0.084	0	13.457	0.081	0	-1	2554481	1295366997
BSC2168													
BSC2169	0	13.747	0.021	0	13.076	0.027	0	12.482	0.025	0	-1	488905	202288012
BSC2170	0	13.698	0.022	0	12.996	0.027	0	12.508	0.027	0	-1	1866825	941222092
BSC2171	\mathbf{Z}	-1	-1	1	-1	-1	1	-1	-1	1	IRAS13349+2438	5000532	-1
BSC2172	0	14.093	0.043	5	13.333	0.047	5	12.584	0.046	5	-1	1721779	856630280
BSC2173	0	14.445	0.050	0	13.636	0.056	0	13.071	0.061	0	-1	1409731	679201529
BSC2174													
BSC2175													
BSC2176													
BSC2177													
BSC2178	0	14.531	0.048	0	13.729	0.058	0	12.737	0.037	0	-1	1230094	578083487
BSC2179													
BSC2180	0	15.753	0.134	3	14.883	0.136	3	14.257	0.135	3	-1	1175309	562099801
BSC2181	0	14.388	0.042	0	13.669	0.046	0	12.988	0.044	0	-1	1243586	582325136
BSC2182	0	13.009	0.013	0	12.254	0.015	0	11.295	0.009	0	-1	1995065	1015000431
BSC2183	0	14.397	0.046	0	13.523	0.048	0	12.772	0.041	0	-1	652310	252845772
BSC2184	0	14.579	0.048	0	13.782	0.047	0	13.062	0.055	0	-1	2655350	1339077043
BSC2185	0	14.834	0.066	3	14.109	0.077	3	13.418	0.073	3	-1	1219559	575371392
BSC2186	0	15.148	0.082	0	14.235	0.097	0	13.754	0.092	0	-1	306531	138767111
BSC2187													
BSC2188	0	14.485	0.063	0	13.808	0.089	0	12.850	0.052	0	-1	1242102	581919644
BSC2189													
BSC2190													
BSC2191													
BSC2192	0	14.735	0.080	0	13.874	0.069	0	12.825	0.057	0	-1	1794489	888280054
BSC2193													
BSC2194													
BSC2195													
BSC2196													
BSC2197													
BSC2198													
BSC2199	0	14.804	0.076	0	14.021	0.079	0	13.778	0.137	0	-1	1868502	942957209
	~	11.001	5.5.5	Ŭ,		5.5.5	~		0.101	č	-		2200,200

Fortsetzung von vorheriger Seite
Fortsetzung von vorheriger Seite

BSC	ccf	j5	dj5	$j_5 f$	h_5	dh_5	$h_5 f$	k_5	dk_5	k_5f	IDcat	XSC No	PSC key
BSC2201	Z	-1	-1	1	-1	-1	1	-1	-1	1	3C273	5000530	-1
BSC2202													
BSC2203	0	13.792	0.027	0	12.915	0.030	0	11.962	0.019	0	-1	2176792	1098207781
BSC2204													
BSC2205													
BSC2206													
BSC2207													
BSC2208	0	15.043	0.085	0	14.085	0.080	0	13.216	0.064	0	-1	1332061	-1
BSC2209	0	15.374	0.120	0	14.982	0.225	0	14.171	0.145	0	-1	1216604	574671313
BSC2210	0	14.924	0.091	0	14.324	0.114	0	13.125	0.074	0	-1	1737235	-1
BSC2211													
BSC2212													
BSC2213	0	15.610	0.123	0	15.270	0.221	0	14.516	0.173	0	-1	487828	202144521
BSC2214													
BSC2215													
BSC2216	0	14.560	0.061	0	13.866	0.065	0	12.919	0.054	0	-1	2645219	1335080330
BSC2217													
BSC2218	0	14.358	0.054	0	13.661	0.061	0	12.740	0.050	0	-1	1639368	808612718
BSC2219	0	15.475	0.111	1	14.775	0.162	1	14.274	0.144	1	-1	2496772	1268041139
BSC2220	0	15.491	0.143	0	14.803	0.167	0	14.045	0.152	0	-1	1435479	688981377
BSC2221	0	14.670	0.049	0	13.789	0.052	0	12.801	0.035	0	-1	502833	-1
BSC2222													
BSC2223	0	14.595	0.044	3	13.859	0.050	3	12.693	0.034	3	-1	622245	239290295
BSC2224													
BSC2225													
BSC2226	0	14.673	0.068	0	13.532	0.060	0	12.659	0.044	0	-1	2181195	1099781126
BSC2227													
BSC2228													
BSC2229	0	15.492	0.144	0	14.711	0.156	0	13.606	0.111	0	-1	1870734	944632941
BSC2230													
BSC2231													
BSC2232													
BSC2233	0	15.295	0.089	0	14.609	0.108	0	13.673	0.090	0	-1	624979	239924377
BSC2234													
BSC2235													
BSC2236													
BSC2237													
BSC2238													
BSC2239	0	14.674	0.063	0	14.014	0.091	0	13.078	0.055	0	-1	2163353	1092658272
											Fortse	tzung nä	chste Seite

Fortsetzung von vorheriger Seite

BSC	ccf	j5	dj5	j5f	h_5	dh_5	h_5f	k_5	dk_5	$k_5 f$	IDcat	XSC No	PSC key
BSC2240													
BSC2241													
BSC2242													
BSC2243													
BSC2244													
BSC2245	0	15.579	0.121	0	14.903	0.149	0	14.388	0.162	0	-1	1119744	534018236
BSC2246													
BSC2247													
BSC2248	0	15.384	0.122	0	14.504	0.132	0	13.689	0.097	0	-1	698678	277708699
BSC2249													
BSC2250													
BSC2251													
BSC2252													
BSC2253													
BSC2254													
BSC2255													
BSC2256													
BSC2257													
BSC2258													
BSC2259													
BSC2260													
BSC2261													
BSC2262													
BSC2263													
BSC2264													
BSC2265													
BSC2266													
BSC2267													
BSC2268													
BSC2269													
BSC2270													
BSC2271													
BSC2272													
BSC2273													
BSC2274													
BSC2275	keine	weiteren	AGN	nachge-									
BSC2276				wiesen									

Tabelle A.11: Die NVSS-Daten für die BSC-AGN-Objekte sind hier zusammengefasst, und enthalten die BSC-Kennung, die Koordianten der NVSS-Quelle, den Fluss F und dessen Fehler dF, die Distanz zwischen optischen und NVSS-Koordinaten, die Orientierung der Koordinaten zueinander (Dist)und einen Zähler für die Anzahl der gefundenen Quellen im Suchradius (Multi).

	Koord	inaten					
BSC	α	δ	F	dF	Dist	Ori	Multi
2044	$12 \ 42 \ 52.32$	$13 \ 15 \ 42.10$	7.5	1.6	17.10	1	1
2045	$12 \ 18 \ 55.10$	$47 \ 18 \ 47.71$	238.9	7.8	43.30	-45	1
2046	$12 \ 03 \ 09.28$	$44 \ 31 \ 54.00$	94.4	4.0	3.97	-60	1
2047	$13 \ 13 \ 27.28$	$36 \ 35 \ 40.40$	121.5	4.5	7.86	-72	1
2048	$12 \ 10 \ 32.52$	$39 \ 24 \ 20.89$	359.6	10.8	1.90	6	1
2049	$10\ 23\ 30.55$	$19\ 51\ 54.80$	97.5	3.5	1.97	-21	2
2049	$10\ 23\ 28.55$	$19\ 52\ 24.30$	30.7	3.5	42.60	-43	1
2050	$11 \ 06 \ 47.71$	$72 \ 34 \ 10.30$	31.3	1.3	3.30	1	1
2051	$11 \ 40 \ 13.78$	$24 \ 41 \ 42.40$	4.1	0.5	5.45	-147	1
2052	$12 \ 18 \ 26.43$	$29\ 48\ 47.30$	38.1	1.2	2.20	-83	1
2053	*	*	*	*	*	*	*
2054	$23 \ 28 \ 46.73$	$03 \ 30 \ 41.50$	55.8	1.7	1.51	15	1
2055	$23 \ 03 \ 17.88$	$08 \ 53 \ 38.90$	13.2	0.6	81.20	25	2
2055	$23 \ 03 \ 15.61$	$08 \ 52 \ 26.30$	180.5	5.4	1.29	8	1
2056	$14\ 17\ 59.32$	$25\ 08\ 13.50$	28.2	1.2	4.47	4	1
2057	$01 \ 43 \ 57.70$	$02 \ 20 \ 59.10$	24.0	1.1	1.10	-2	1
2058	$01 \ 27 \ 32.20$	$19\ 10\ 45.10$	4.8	0.5	3.57	-54	1
2059	*	*	*	*	*	*	*
2060	*	*	*	*	*	*	*
2061	$16 \ 32 \ 26.14$	$82 \ 32 \ 20.30$	800.8	25.3	13.40	-62	1
2062	$00 \ 06 \ 19.45$	$20\ 12\ 10.30$	7.3	0.5	3.42	-13	1
2063	$00\ 02\ 25.94$	$03 \ 21 \ 02.70$	5.2	0.5	7.62	-115	1
2064	$13 \ 54 \ 19.19$	$32 \ 55 \ 44.71$	3.3	0.4	9.26	-104	1
2065	$17 \ 55 \ 48.36$	$62 \ 36 \ 44.41$	287.8	8.6	1.42	-11	1
2066	$22 \ 04 \ 22.10$	$04 \ 40 \ 41.50$	3.9	0.4	78.50	59	3
2066	$22 \ 04 \ 17.43$	$04 \ 40 \ 02.70$	466.7	16.2	3.07	-56	2
2066	$22\ 04\ 15.62$	$04 \ 40 \ 13.90$	310.0	10.2	32.30	-67	1
2067	$09\ 26\ 03.42$	$12 \ 43 \ 41.00$	37.0	1.5	22.30	172	1
2068	*	*	*	*	*	*	*
2069	$22 \ 23 \ 45.35$	$11 \ 49 \ 52.90$	3.3	0.5	15.90	161	1
2070	$09\ 18\ 26.05$	$16 \ 18 \ 21.20$	6.1	0.5	3.87	34	1
2071	$23\ 18\ 56.68$	$00 \ 14 \ 37.20$	24.4	0.8	0.32	-58	1
2072	$07 \ 47 \ 28.88$	$60 \ 56 \ 00.40$	5.8	0.5	2.62	168	1
2073	$15 \ 35 \ 52.56$	$57 \ 54 \ 16.70$	4.8	0.4	8.00	15	1
2074	$15\ 57\ 03.27$	$63 \ 50 \ 30.30$	7.3	0.5	3.32	-3	1
2075	$13 \ 03 \ 58.93$	$53\ 47\ 25.40$	2.7	0.5	5.65	-117	1
2076	$13 \ 53 \ 03.88$	$69\ 18\ 28.71$	23.2	1.1	1.56	143	1
2077	$02 \ 49 \ 20.66$	19 18 11.60	3.6	0.6	2.32	99	1
2078	$15 \ 59 \ 10.07$	$35 \ 01 \ 45.61$	5.5	0.4	5.78	94	1
2079	$16\ 11\ 24.57$	58 51 03.80	3.3	0.4	2.79	-5	1

Fortsetzung von voheriger Seite

	Koord	inaten					
BSC	α	δ	F	dF	Dist	Ori	Multi
2080	$14 \ 36 \ 22.07$	$58\ 47\ 41.60$	11.2	0.5	3.75	-16	1
2081	$09 \ 23 \ 43.03$	$22 \ 54 \ 30.30$	10.3	0.5	1.61	-39	1
2082	*	*	*	*	*	*	*
2083	*	*	*	*	*	*	*
2084	$22 \ 59 \ 33.05$	$24 \ 55 \ 07.70$	3.7	0.4	2.67	50	1
2085	$03 \ 00 \ 12.10$	$16 \ 30 \ 55.00$	4.1	0.6	72.50	55	1
2086	*	*	*	*	*	*	*
2087	$09 \ 59 \ 55.99$	$13 \ 02 \ 47.70$	2.9	0.4	10.80	7	1
2088	$09\ 25\ 12.67$	$52\ 17\ 08.59$	9.7	0.5	2.50	-124	1
2089	*	*	*	*	*	*	*
2090	$00 \ 51 \ 34.99$	$29\ 24\ 06.10$	10.0	0.5	4.11	-2	1
2091	*	*	*	*	*	*	*
2092	$16\ 17\ 45.73$	$06 \ 03 \ 50.40$	5.8	0.4	4.30	127	1
2093	$08 \ 39 \ 53.57$	$48 \ 47 \ 50.91$	12.7	0.8	65.00	37	1
2094	$23 \ 04 \ 02.61$	$22 \ 37 \ 25.50$	22.5	0.8	0.52	8	1
2095	$23 \ 41 \ 06.65$	09 38 04.00	4.8	0.5	3.75	143	1
2096	$10 \ 19 \ 21.68$	$63 \ 59 \ 06.10$	14.3	0.9	88.10	43	2
2096	$10 \ 19 \ 09.95$	$63 \ 58 \ 03.60$	3.6	0.4	16.90	-85	1
2097	*	*	*	*	*	*	*
2098	$10 \ 34 \ 38.57$	$39 \ 38 \ 27.80$	25.4	0.9	0.85	104	1
2099	$15\ 07\ 44.43$	$51\ 27\ 02.69$	3.5	0.5	7.21	-151	1
2100	*	*	*	*	*	*	*
2101	$03 \ 30 \ 52.65$	$05 \ 38 \ 34.80$	3.8	0.5	12.90	24	2
2101	$03 \ 30 \ 47.30$	$05 \ 39 \ 01.10$	5.9	0.5	83.80	-63	1
2102	$12 \ 42 \ 11.05$	$33\ 17\ 12.30$	6.0	0.5	11.70	29	1
2103	*	*	*	*	*	*	*
2104	$14 \ 31 \ 05.05$	28 17 21.40	3.2	0.4	9.53	29	2
2104	$14 \ 31 \ 01.68$	$28\ 18\ 07.30$	2.4	0.4	67.30	-36	1
2105	10 17 18.72	$29 \ 14 \ 27.50$	2.2	0.4	7.10	129	1
2106	$11 \ 21 \ 47.21$	11 44 18.40	3.0	0.5	1.67	110	1
2107	*	*	*	*	*	*	*
2108	*	*	*	*	*	*	*
2109	*	*	*	*	*	*	*
2110	$12 \ 25 \ 13.07$	$32 \ 14 \ 01.20$	49.3	1.5	0.94	-154	1
2111	$11 \ 45 \ 10.06$	$30\ 47\ 13.40$	2.9	0.4	2.43	-132	1
2112	*	*	*	*	*	*	*
2113	$00 \ 53 \ 34.77$	$12 \ 41 \ 33.80$	8.3	0.5	2.29	-122	1
2115	*	*	*	*	*	*	*
2116	*	*	*	*	*	*	*
2117	*	*	*	*	*	*	*
2118	11 41 15.87	$21 \ 56 \ 30.30$	4.5	0.5	9.80	-19	1
2119	$12 \ 32 \ 02.95$	20 09 26.40	2.8	0.4	8.24	-109	1
2120	*	*	*	*	*	*	*
2121	*	*	*	*	*	*	*
2122	08 54 39.25	$17 \ 41 \ 23.60$	5.6	0.4	2.69	15	1
	0	0	- 2			-	

Fortsetzung von voheriger Seite

BSC α δ F dF Dist Ori Multi 2123 *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2126**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2128**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2135**<
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2151 *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2153 *
2153 14 29 06.83 01 17 03.20 2.7 0.5 3.51 103 1 0155 * * * * * * * *
2157 16 16 42.98 04 12 22.60 2.7 0.4 6.03 154 1
2158 08 32 25.22 37 07 36.50 8.2 0.5 1.80 -33 1
2159 * * * * * * *
2160 * * * * * * *
2161 * * * * * * *
2162 * * * * * * *
2163 * * * * * * *
2164 14 06 21.40 22 23 44.30 2.8 0.5 6.24 -116 1
2165 01 16 54.02 25 49 32.80 12.9 1 0 6 89 -10 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2167 08 11 00.94 76 02 45.59 3.3 0.4 10.20 50 1
2168 11 21 07.99 53 51 22.90 2.4 0.4 7.97 -52 1

Fortsetzung von voheriger Seite

	Koord	linaten					
BSC	α	δ	F	dF	Dist	Ori	Multi
2169	11 27 16.24	19 09 20.20	6.9	0.5	1.29	26	1
2170	$11 \ 18 \ 03.21$	$45 \ 06 \ 44.80$	15.6	0.6	2.43	-156	1
2171	$13 \ 37 \ 18.73$	$24 \ 23 \ 02.80$	19.6	0.7	2.49	45	1
2172	*	*	*	*	*	*	*
2173	*	*	*	*	*	*	*
2174	$17\ 16\ 02.63$	$31 \ 12 \ 08.60$	3.0	0.5	9.22	118	1
2175	*	*	*	*	*	*	*
2176	*	*	*	*	*	*	*
2177	$10 \ 50 \ 35.90$	$80\ 11\ 55.29$	5.5	0.5	4.46	17	1
2178	*	*	*	*	*	*	*
2179	*	*	*	*	*	*	*
2180	*	*	*	*	*	*	*
2181	$13 \ 44 \ 21.59$	$66 \ 37 \ 13.41$	2.7	0.4	5.78	142	1
2182	16 13 56.88	$65 \ 43 \ 10.41$	3.9	0.5	1.61	-27	1
2183	*	*	*	*	*	*	*
2184	15 25 58.32	18 14 14.40	3.5	0.5	1.33	-117	1
2185	11 09 20.08	71 42 31.79	4.1	0.5	1.82	133	1
2186	09 46 52.73	13 19 59.10	7.9	0.5	6.38	18	1
2187	*	*	*	*	*	*	*
2188	*	*	*	*	*	* 1 0 -	*
2189	22 52 07.90	14 54 40.90	2.2	0.5	6.28	-167	1
2190	15 21 11.74	22 27 20.80	2.2	0.4	40.70	-123	1
2191	15 47 31.72	10 24 50.30	3.0	0.4	7.13	-88	1
2192	09 47 33.77	10 04 58.90	3.0 7.1	0.5	14.00	125	1
2193	00 29 13.79	$13\ 10\ 03.00$	(.L 10.1	0.5	1.40	04 104	1
2194 2104	03 08 00.77 02 17 04 62	$11\ 05\ 14.40$ $11\ 04\ 02\ 20$	12.1	0.0	2.00	104	2 1
$2194 \\ 2105$	02 17 04.03	11 04 02.20	827.4 *	27.5 *	44.20 *	-98 *	1 *
2195	16 55 51 49	21 46 02 40	66	0.5	4.94	26	1
$2190 \\ 2107$	10 00 01.40	21 40 02.40	0.0 *	0.5	4.24	30 *	*
2107	*	*	*	*	*	*	*
2190 2199	*	*	*	*	*	*	*
2100 2200	08 01 31 88	47 36 16 90	76.6	2.7	3 12	-23	2
2200 2200	08 01 29.55	47 37 31.30	10.3	1.4	81.10	-18	1
2201	12 29 06.41	02 03 05.10	54991.2	1900.3	4.76	-113	1
2202	*	*	*	*	*	*	*
2203	$01 \ 59 \ 50.25$	$00 \ 23 \ 38.90$	26.2	0.9	2.31	92	1
2204	*	*	*	*	*	*	*
2205	*	*	*	*	*	*	*
2206	*	*	*	*	*	*	*
2207	*	*	*	*	*	*	*
2208	*	*	*	*	*	*	*
2209	*	*	*	*	*	*	*
2210	$11 \ 37 \ 37.93$	$10 \ 39 \ 28.50$	2.6	0.4	1.84	-145	1
2211	*	*	*	*	*	*	*

	Koord	inaten					
BSC	α	δ	F	dF	Dist	Ori	Multi
2212	*	*	*	*	*	*	*
2213	$11 \ 19 \ 08.57$	$21 \ 19 \ 13.90$	6.1	0.5	4.13	-173	1
2214	*	*	*	*	*	*	*
2215	$10\ 05\ 41.03$	$43 \ 32 \ 26.60$	2.8	0.5	15.60	-143	1
2216	*	*	*	*	*	*	*
2217	$13 \ 12 \ 17.75$	$35\ 15\ 21.51$	47.2	1.5	2.56	15	1
2218	*	*	*	*	*	*	*
2219	*	*	*	*	*	*	*
2220	*	*	*	*	*	*	*
2221	$16\ 26\ 06.78$	$33 \ 59 \ 11.70$	4.4	0.5	4.58	-120	1
2222	*	*	*	*	*	*	*
2223	*	*	*	*	*	*	*
2224	$17\ 23\ 23.30$	$34 \ 19 \ 04.90$	15.4	0.6	73.70	25	2
2224	$17 \ 23 \ 20.85$	$34\ 17\ 57.31$	518.3	19.7	0.91	136	1
2225	$17\ 10\ 13.44$	$33 \ 43 \ 59.60$	4.6	0.4	1.50	160	2
2225	$17\ 10\ 09.04$	$33 \ 45 \ 10.30$	3.9	0.4	88.10	-38	1
2226	*	*	*	*	*	*	*
2227	*	*	*	*	*	*	*
2228	*	*	*	*	*	*	*
2229	*	*	*	*	*	*	*
2230	*	*	*	*	*	*	*
2231	*	*	*	*	*	*	*
2232	$09 \ 56 \ 52.29$	41 15 58.20	3.6	0.5	35.20	0	1
2233	$14 \ 42 \ 59.32$	40 44 29.10	963.4	28.9	65.80	-147	1
2234	$08 \ 36 \ 58.58$	44 26 02.10	6.6	0.5	3.65	-72	1
2235	*	*	*	*	*	*	*
2236	*	*	*	*	*	*	*
2237	*	*	*	*	*	*	*
2238	*	*	*	*	*	*	*
2239	$15 \ 47 \ 44.23$	20 52 41.00	1560.2	54.3	28.40	24	2
2239	$15 \ 47 \ 42.72$	$20\ 51\ 46.00$	836.0	28.9	30.50	-162	1
2240	*	*	*	*	*	*	*
2241	$14 \ 40 \ 13.25$	$61 \ 56 \ 43.40$	3.4	0.5	10.80	17	1
2242	00 19 39.21	$26\ 02\ 45.40$	683.3	22.5	8.71	-130	2
2242	$00 \ 19 \ 38.45$	$26 \ 03 \ 40.10$	12.4	0.5	51.90	-19	1
2243	*	*	*	*	*	*	*
2244	11 31 09.66	31 14 04.20	369.7	13.0	1.94	158	1
2245	$09\ 28\ 38.27$	$60\ 25\ 22.20$	294.1	9.9	4.21	41	1
2246	*	*	*	*	*	*	*
2247	11 04 12.22	76 58 59.71	2339.4	79.2	6.60	-66	1
2248	*	*	*	*	*	*	*
2249	*	*	*	*	*	*	*
2250	*	*	*	*	*	*	*
2251	*	*	*	*	*	*	*
2252	*	*	*	*	*	*	*

Fortsetzung von voheriger Seite

Fortsetzung von voheriger Seite

	Koord	inaten					
BSC	α	δ	F	dF	Dist	Ori	Multi
2253	*	*	*	*	*	*	*
2254	$14\ 26\ 28.74$	$39\ 02\ 22.60$	22.9	1.1	82.70	-166	1
2255	$11 \ 48 \ 01.79$	$27 \ 14 \ 44.50$	2.7	0.4	45.20	110	1
2256	$15 \ 14 \ 43.20$	$36 \ 50 \ 49.90$	988.4	31.0	2.36	92	1
2257	$12 \ 10 \ 37.68$	$31 \ 57 \ 24.20$	252.3	8.0	20.20	3	2
2257	$12 \ 10 \ 37.34$	$31 \ 56 \ 14.00$	35.6	1.1	50.20	-176	1
2258	$02 \ 17 \ 10.69$	$11 \ 04 \ 22.30$	546.3	18.8	47.70	73	2
2258	$02\ 17\ 04.63$	11 04 02.20	827.4	27.3	44.20	-98	1
2259	*	*	*	*	*	*	*
2260	*	*	*	*	*	*	*
2261	*	*	*	*	*	*	*
2262	*	*	*	*	*	*	*
2263	*	*	*	*	*	*	*
2264	*	*	*	*	*	*	*
2265	*	*	*	*	*	*	*
2266	$00 \ 05 \ 59.41$	$16 \ 09 \ 46.70$	804.4	27.0	3.35	113	1
2267	*	*	*	*	*	*	*
2268	*	*	*	*	*	*	*
2269	$00\ 28\ 11.65$	$31 \ 03 \ 26.70$	202.1	6.5	23.70	149	2
2269	$00 \ 28 \ 09.30$	$31 \ 04 \ 12.60$	9.1	0.5	31.30	-35	1
2270	*	*	*	*	*	*	*
2271	*	*	*	*	*	*	*
2272	*	*	*	*	*	*	*
2273	15 45 10.91	34 52 45.11	18.5	0.7	2.41	-28	2
2273	$15 \ 45 \ 06.94$	34 53 36.80	58.3	1.8	73.50	-43	1
2274	*	*	*	*	*	*	*
2275	16 20 21.40	17 36 29.30	1993.9	63.1	8.43	-42	1
2276	11 58 38.47	$62\ 54\ 22.80$	875.5	27.5	11.60	-106	1
2277	$16 \ 42 \ 58 \ 77$	39 48 36 99	7098.6	213.0	1.26	41	1
2278	$10 \ 10 \ 27 \ 63$	41 32 36 60	498.1	16.9	2.07	134	1
2279	$10\ 10\ 21.00$ $11\ 07\ 15\ 02$	$16\ 28\ 01\ 50$	868.6	28.5	1.76	74	1
2280	*	*	*	*	*	*	*
2281	23 47 35 22	27 19 01 00	118.3	3.6	1.65	89	1
2281	11 39 58 60	$65 \ 47 \ 47 \ 10$	3095.1	102.6	8.23	103	1
2283	12 04 22 70	43 29 41 50	27	0.5	74 90	-169	1
2284	23 46 36 84	09 30 46 00	1804.2	54 1	2.34	64	1
2285	*	*	*	*	*	*	*
2286	13 57 04 37	19 19 08 10	2585.6	88.0	2.09	-11	1
2280	*	*	*	*	2.00	*	*
2288	15 39 34 88	47 35 31 50	91.5	2.8	1 91	75	1
2289	*	*	*	2.0 *	*	*	*
2200	16 33 02 58	23 49 30 60	3.6	0.5	2.65	_7	1
2290	22535770	16 08 53 40	12656.8	3707	0.36	Q	1
2201	14 00 27 02	26 18 15 00	10.6	05	54 10	03	- 9
2202	14 00 21.02	26 18 29 /0	0.1	0.5	3.47	13 13	2 1
4494	17 00 40.00	20 10 22.40	9.1	0.0	0.41	10	1

	Koord	inaten					
BSC	α	δ	F	dF	Dist	Ori	Multi
2293	$11 \ 51 \ 20.69$	$54 \ 37 \ 32.71$	4.3	0.5	3.69	44	1
2294	$21 \ 48 \ 05.48$	$06\ 57\ 39.40$	2589.1	91.4	1.30	116	1
2295	*	*	*	*	*	*	*
2296	$17 \ 19 \ 38.31$	$48 \ 04 \ 12.20$	63.3	1.9	1.14	81	1
2297	*	*	*	*	*	*	*
2298	*	*	*	*	*	*	*
2299	$08 \ 41 \ 24.46$	70 53 41.41	3823.1	114.7	1.45	11	1

Fortsetzung von voheriger Seite

B. Spektrale Energieverteilungen aller BSC-AGN-Objekte

Abbildung B.1: Spektrale Energieverteilung der BSC-AGN-Objekte

Abbildung B.2: Spektrale Energieverteilung der BSC-AGN-Objekte

Abbildung B.3: Spektrale Energieverteilung der BSC-AGN-Objekte

Abbildung B.4: Spektrale Energieverteilung der BSC-AGN-Objekte

Abbildung B.5: Spektrale Energieverteilung der BSC-AGN-Objekte

Abbildung B.6: Spektrale Energieverteilung der BSC-AGN-Objekte

Abbildung B.7: Spektrale Energieverteilung der BSC-AGN-Objekte

Abbildung B.8: Spektrale Energieverteilung der BSC-AGN-Objekte

Abbildung B.9: Spektrale Energieverteilung der BSC-AGN-Objekte

Abbildung B.10: Spektrale Energieverteilung der BSC-AGN-Objekte

Abbildung B.11: Spektrale Energieverteilung der BSC-AGN-Objekte

Abbildung B.12: Spektrale Energieverteilung der BSC-AGN-Objekte

Abbildung B.13: Spektrale Energieverteilung der BSC-AGN-Objekte

 $\log(\nu L_{\nu})$ (erg s⁻¹)

 $\log(\nu L_{\nu})$ (erg s⁻¹)

 $\log(\nu L_{\nu})$ (erg s⁻¹)

Abbildung B.14: Spektrale Energieverteilung der BSC-AGN-Objekte

Abbildung B.15: Spektrale Energieverteilung der BSC-AGN-Objekte

 $\log(\nu L_{\nu})$ (erg s⁻¹)

 $\log(\nu L_{\nu})$ (erg s⁻¹)

 $\log(\nu L_{\nu})$ (erg s⁻¹)

Abbildung B.16: Spektrale Energieverteilung der BSC-AGN-Objekte

Abbildung B.17: Spektrale Energieverteilung der BSC-AGN-Objekte

Abbildung B.18: Spektrale Energieverteilung der BSC-AGN-Objekte

Abbildung B.19: Spektrale Energieverteilung der BSC-AGN-Objekte

Abbildung B.20: Spektrale Energieverteilung der BSC-AGN-Objekte

Abbildung B.21: Spektrale Energieverteilung der BSC-AGN-Objekte

Abbildung B.22: Spektrale Energieverteilung der BSC-AGN-Objekte

Literaturverzeichnis

Abazajian K. N., et al., 2003, in press astro-ph/0305492, 126

- Abramowicz M. A., Madau P., Calvani M., 1987, Comments on Astrophysics, 12, 67
- Allen M. G., Dopita M. A., Tsvetanov Z. I., Sutherland R. S., 1999, ApJ, 511
- Alonso-Herrero A., Quillen A. C., Rieke G. H., Ivanov V. D., Efstathiou A., 2003, AJ, 126, 81
- Antonucci R., 1993, ARA&A, 31, 473
- Antonucci R. R. J., Miller J. S., 1985, ApJ, 297, 621
- Bade N., Fink H. H., Engels D., Voges W., Hagen H.-J., Wisotzki L., Reimers D., 1995, A&AS, 110, 469
- Baldwin J. A., Phillips M. M., Terlevich R., 1981, PASP, 93, 5
- Barvainis R., 1987, ApJ, 320, 537
- Bechtold J., Elvis M., Fiore F., Kuhn O., Cutri R. M., McDowell J. C., Rieke M., Siemiginowska A., Wilkes B. J., 1994, AJ, 108, 374
- Becker R. H., White R. L., Gregg M. D., Laurent-Muehleisen S. A., Brotherton M. S., Impey C. D., Chaffee F. H., Richards G. T., Helfand D. J., Lacy M., Courbin F., Proctor D. D., 2001, ApJS, 135, 227
- Begelman M. C., 1985, in Astrophysics of Active Galaxies and Quasi-Stellar Objects Accretion disks in active galactic nuclei. pp 411–452
- Bennett A. S., 1962, MemRAS, 68, 163
- Bianchi S., Matt G., Iwasawa K., 2001, MNRAS, 322
- Blair M., Gilmore G., 1982, PASP, 94, 742
- Blandford R. D., McKee C. F., 1982, ApJ, 255, 419
- Boella G., Butler R. C., Perola G. C., Piro L., Scarsi L., Bleeker J. A. M., 1997, A&AS, 122, 299

Boyle B. J., Fong R., Shanks T., Peterson B. A., 1990, MNRAS, 243, 1

Boyle B. J., Shanks T., Croom S. M., Smith R. J., Miller L., Loaring N., Heymans C., 2000, MNRAS, 317, 1014

- Bregman J. N., 1990, A&ARv, 2, 125
- Brinkmann W., Yuan W., Siebert J., 1997, A&A, 319, 413
- Chaffee F. H., Foltz C. B., Hewett P. C., Francis P. A., Weymann R. J., Morris S. L., Anderson S. F., MacAlpine G. M., 1991, AJ, 102, 461
- Clavel J., Wamsteker W., Glass I. S., 1989, ApJ, 337, 236
- Cohen M., Wheaton W. A., Megeath S. T., 2003, AJ, 126, 1090
- Colina L., Bohlin R., Castelli F., 1996, Technical report, Absolute Flux Calibrated Spectrum of Vega. Space Telescope Science Institute
- Collin-Souffrin S., Dyson J. E., McDowell J. C., Perry J. J., 1988, MNRAS, 232, 539
- Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A., Taylor G. B., Broderick J. J., 1998, AJ, 115, 1693
- Croom S. M., Smith R. J., Boyle B. J., Shanks T., Loaring N. S., Miller L., Lewis I. J., 2001, MNRAS, 322, L29
- Cutri R. M., Skrutskie M. F., van Dyk S., Beichman C. A., Carpenter J. M., Chester T., Cambresy L., Evans T., Fowler J., Gizis J., Howard E., Huchra J., Jarrett T., Kopan E. L., Kirkpatrick J. D., Light R. M., Marsh K. A., et al., 2003, VizieR Online Data Catalog, 2246, 0
- de Veny J. B., Osborn W. H., Janes K., 1971, PASP, 83, 611

Dickey J. M., Lockman F. J., 1990, ARA&A, 28, 215

- Edelson R. A., Alexander T., Crenshaw D. M., Kaspi S., Malkan M. A., Peterson B. M., Warwick R. S., Clavel J., Filippenko A. V., Horne K., Korista K. T., Kriss G. A., Krolik J. H., Maoz D., Nandra K., O'Brien P. T., Penton S. V., Yaqoob T., et al., 1996, ApJ, 470, 364
- Edge D. O., Shakeshaft J. R., McAdam W. B., Baldwin J. E., Archer S., 1959, MemRAS, 68, 37
- Elvis M., Wilkes B. J., McDowell J. C., Green R. F., Bechtold J., Willner S. P., Oey M. S., Polomski E., Cutri R., 1994, ApJS, 95, 1
- Fanaroff B. L., Riley J. M., 1974, MNRAS, 167, 31P
- Feigelson E. D., Nelson P. I., 1985, ApJ, 293, 192
- Fraquelli H. A., Storchi-Bergmann T., Binette L., 2000, ApJ, 532, 867
- Freedman W. L., Madore B. F., Gibson B. K., Ferrarese L., Kelson D. D., Sakai S., Mould J. R., Kennicutt R. C., Ford H. C., Graham J. A., Huchra J. P., Hughes S. M. G., Illingworth G. D., Macri L. M., Stetson P. B., 2001, ApJ, 553, 47
- Fukugita M., Ichikawa T., Gunn J. E., Doi M., Shimasaku K., Schneider D. P., 1996, AJ, 111, 1748

- Gebhardt K., Kormendy J., Ho L. C., Bender R., Bower G., Dressler A., Faber S. M., Filippenko A. V., Green R., Grillmair C., Lauer T. R., Magorrian J., Pinkney J., Richstone D., Tremaine S., 2000, ApJL, 543, L5
- Goodrich R. W., 1989, ApJ, 342, 224
- Granato G. L., Danese L., 1994, MNRAS, 268, 235
- Hagen H.-J., Groote D., Engels D., Reimers D., 1995, A&AS, 111, 195
- Heckman T. M., 1980, A&A, 87, 152
- Hewett P. C., Foltz C. B., Chaffee F. H., 1995, AJ, 109, 1498
- Hewett P. C., Foltz C. B., Chaffee F. H., Francis P. J., Weymann R. J., Morris S. L., Anderson S. F., MacAlpine G. M., 1991, AJ, 101, 1121
- Ho L. C., 1999, ApJ, 516, 672
- Ho L. C., Filippenko A. V., Sargent W. L. W., 1993, ApJ, 417, 63
- Ho L. C., Peng C. Y., 2001, ApJ, 555, 650
- Høg E., Fabricius C., Makarov V. V., Urban S., Corbin T., Wycoff G., Bastian U., Schwekendiek P., Wicenec A., 2000, A&A, 355, L27
- Huchra J., Burg R., 1992, ApJ, 393, 90
- Iovino A., Clowes R., Shaver P., 1996, A&AS, 119, 265
- Isobe T., Feigelson E. D., Nelson P. I., 1986, ApJ, 306, 490
- Jarrett T. H., Chester T., Cutri R., Schneider S., Skrutskie M., Huchra J. P., 2000, AJ, 119, 2498
- Johnson H. L., Morgan W. W., 1953, ApJ, 117, 313
- Kaspi S., Smith P. S., Netzer H., Maoz D., Jannuzi B. T., Giveon U., 2000, ApJ, 533, 631
- Kellermann K. I., Sramek R., Schmidt M., Shaffer D. B., Green R., 1989, AJ, 98, 1195
- Khachikian E. Y., Weedman D. W., 1974, ApJ, 192, 581
- Koornneef J., 1983, A&A, 128, 84
- Koratkar A., Blaes O., 1999, PASP, 111, 1
- Kormendy J., Richstone D., 1995, ARA&A, 33, 581
- Krolik J. H., Begelman M. C., 1988, ApJ, 329, 702
- Kuraszkiewicz J. K., Wilkes B. J., Hooper E. J., McLeod K. K., Wood K., Bjorkman J., Delain K. M., Hughes D. H., Elvis M. S., Impey C. D., Lonsdale C. J., Malkan M. A., McDowell J. C., Whitney B., 2003, ApJ, 590, 128

- La Franca F., Franceschini A., Cristiani S., Vio R., 1995, A&A, 299, 19
- Lacy M., Laurent-Muehleisen S. A., Ridgway S. E., Becker R. H., White R. L., 2001, ApJ, 551, L17
- Laor A., 2000, ApJ, 543, L111
- Lawrence A., 1987, PASP, 99, 309
- MacLeod J. M., Andrew B. H., 1968, ApL, 1, 243
- Madejski G. M., 1998, Abramowicz M. A., Bjornsson G., Pringle J. E., ed., Theory of Black Hole Accretion Disks. Cambridge University Press, pp 21–+
- Maiolino R., Rieke G. H., 1995, ApJ, 454, 95
- Malaguti G., Bassani L., Cappi M., Comastri A., di Cocco G., Fabian A. C., Palumbo G. G. C., Maccacaro T., Maiolino R., Blanco P., Dadina M., dal Fiume D., Frontera F., Trifoglio M., 1999, A&A, 342, L41
- Mas-Hesse J. M., Rodriguez-Pascual P. M., Sanz Fernandez de Cordoba L., Mirabel I. F., Wamsteker W., Makino F., Otani C., 1995, A&A, 298, 22
- Mathews W. G., Ferland G. J., 1987, ApJ, 323, 456
- Matthews T. A., Sandage A. R., 1963, ApJ, 138, 30
- McLeod K. K., Rieke G. H., 1995, ApJ, 441, 96
- McLure R. J., Dunlop J. S., Kukula M. J., 2000, MNRAS, 318, 693
- Megessier C., 1995, A&A, 296, 771
- Miller J. S., Antonucci R. R. J., 1983, ApJL, 271, L7
- Miller J. S., Goodrich R. W., 1990, ApJ, 355, 456
- Monet D. B. A., Canzian B., Dahn C., Guetter H., Harris H., Henden A., Levine S., Luginbuhl C., Monet A. K. B., Rhodes A., Riepe B., Sell S., Stone R., Vrba F., Walker R., 1998, VizieR Online Data Catalog, 1252, 0
- Moran E. C., Halpern J. P., Bothun G. D., Becker R. H., 1992, AJ, 104, 990
- Moshir M., Kopman G., Conrow T. A. O., 1992, IRAS Faint Source Survey, Explanatory supplement version 2. Pasadena: Infrared Processing and Analysis Center, California Institute of Technology, 1992, edited by Moshir, M.; Kopman, G.; Conrow, T. a.o.
- Mukai K., 1993, Legacy, vol. 3, p.21-31, 3, 21
- Mulchaey J. S., Koratkar A., Ward M. J., Wilson A. S., Whittle M., Antonucci R. R. J., Kinney A. L., Hurt T., 1994, ApJ, 436, 586
- Nandra K., Pounds K. A., 1994, MNRAS, 268, 405
- Narayan R., Raymond J., 1999, ApJL, 515, L69
- Netzer H., Peterson B. M., 1997, in ASSL Vol. 218: Astronomical Time Series Reverberation Mapping and the Physics of Active Galactic Nuclei. pp 85–+
- Neugebauer G., Habing H. J., van Duinen R., Aumann H. H., Baud B., Beichman C. A., Beintema D. A., Boggess N., Clegg P. E., de Jong T., Emerson J. P., Gautier T. N., Gillett F. C., Harris S., Hauser M. G., Houck J. R., Jennings R. E., Low F. J., et al., 1984, ApJL, 278, L1
- Norberg P., Cole S., Baugh C. M., Frenk C. S., Baldry I., Bland-Hawthorn J., Bridges T., Cannon R., Colless M., Collins C., Couch W., Cross N. J. G., Dalton G., De Propris R., Driver S. P., Efstathiou G., Ellis R. S., et al., 2002, MNRAS, 336, 907
- Oke J. B., Gunn J. E., 1974, ApJL, 189, L5+
- Oke J. B., Sandage A., 1968, ApJ, 154, 21
- Osterbrock D. E., 1977, ApJ, 215, 733
- Osterbrock D. E., 1981, ApJ, 249, 462
- Osterbrock D. E., Pogge R. W., 1985, ApJ, 297, 166
- Osterbrock D. E., Shaw R. A., 1988, ApJ, 327, 89
- Pennington R. L., Humphreys R. M., Odewahn S. C., Zumach W., Thurmes P. M., 1993, PASP, 105, 521
- Peterson B. M., 1997, An introduction to active galactic nuclei. Cambridge University Press
- Peterson B. M., Wandel A., 2000, ApJL, 540, L13
- Phillips M. M., Charles P. A., Baldwin J. A., 1983, ApJ, 266, 485
- Pier E. A., Krolik J. H., 1992, ApJL, 399, L23
- Rees M. J., 1984, ARA&A, 22, 471
- Rees M. J., Sciama D. W., 1966, ApJ, 145, 6
- Richstone D., Ajhar E. A., Bender R., Bower G., Dressler A., Faber S. M., Filippenko A. V., Gebhardt K., Green R., Ho L. C., Kormendy J., Lauer T. R., Magorrian J., Tremaine S., 1998, Nature, 395, A14+
- Richstone D. O., Schmidt M., 1980, ApJ, 235, 361
- Rieke G. H., Lebofsky M. J., 1981, ApJ, 250, 87
- Salpeter E. E., 1964, ApJ, 140, 796
- Sarajedini V. L., Green R. F., Griffiths R. E., Ratnatunga K., 1999, ApJ, 514, 746
- Schechter P., 1976, ApJ, 203, 297
- Schlegel D. J., Finkbeiner D. P., Davis M., 1998, ApJ, 500, 525

- Schmidt M., 1969, in Quasars and high-energy astronomy Models of Quasi-stellar Sources. pp 55–+
- Schmidt M., Green R. F., 1983, ApJ, 269, 352
- Schneider D. P., Schmidt M., Gunn J. E., 1994, AJ, 107, 1245
- Seyfert C. K., 1943, ApJ, 97, 28
- Simkin S. M., Su H. J., Schwarz M. P., 1980, ApJ, 237, 404
- Skinner C. J., 1996, Technical report, Flux Units and NICMOS. Space Telescope Science Institute
- Skrutskie M. F., Schneider S. E., Stiening R., Strom S. E., Weinberg M. D., Beichman C., Chester T., Cutri R., Lonsdale C., Elias J., Elston R., Capps R., Carpenter J., Huchra J., Liebert J., Monet D., Price S., Seitzer P., 2000, VizieR Online Data Catalog, 1, 2003
- Snowden S. L., Schmitt J. H. M. M., 1990, Ap&SS, 171, 207
- Stepanian J. A., Benítez E., Krongold Y., Cruz-González I., de Diego J. A., Chavushyan V., Mújica R., Dultzin-Hacyan D., Verdugo T., 2003, ApJ, 588, 746
- Stoughton C., Lupton R. H., Bernardi M., Blanton M. R., Burles S., Castander F. J., Connolly A. J., Eisenstein D. J., Frieman J. A., Hennessy G. S., Hindsley R. B., Ivezić Ž., Kent S., Kunszt P. Z., Lee B. C., Meiksin A., Munn J. A., et al., 2002, AJ, 123, 485
- Tananbaum H., Avni Y., Branduardi G., Elvis M., Fabbiano G., Feigelson E., Giacconi R., Henry J. P., Pye J. P., Soltan A., Zamorani G., 1979, ApJ, 234, L9
- Tremonti C. A., Uomoto A., Antonucci R. R. J., Tsvetanov Z. I., Ford H. C., Kriss G. A., 1996, Bulletin of the American Astronomical Society, 28, 1287
- Tsvetanov Z., Walsh J. R., 1992, ApJ, 386, 485
- Unger S. W., Pedlar A., Axon D. J., Whittle M., Meurs E. J. A., Ward M. J., 1987, MNRAS, 228, 671
- Unsöld A., Baschek B., 1999, Der Neue Kosmos. Springer-Verlag Berlin Heidelberg New York
- Urry C. M., Padovani P., 1995, PASP, 107, 803
- Véron-Cetty M. P., Véron P., 2000, A&ARv, 10, 81
- Véron-Cetty M.-P., Véron P., 2001, A&A, 374, 92
- Veron P., Veron-Cetty M.-P., 1986, A&A, 161, 145
- Vignali C., Brandt W. N., Schneider D. P., 2003, AJ, 125, 433
- Visnovsky K. L., Impey C. D., Foltz C. B., Hewett P. C., Weymann R. J., Morris S. L., 1992, ApJ, 391, 560

- Voges W., 1992, in European ISY Symposium Space Science with Particular Emphasis on High Energy Astrophysics, ESA ISY3 Vol. 9, The ROSAT all-sky X ray survey
- Voges W., Aschenbach B., Boller T., Bräuninger H., Briel U., Burkert W., Dennerl K., Englhauser J., Gruber R., Haberl F., Hartner G., Hasinger G., Kürster M., Pfeffermann E., et al., 1999, A&A, 349, 389
- Voges W., Aschenbach B., Boller T., Brauninger H., Briel U., Burkert W., Dennerl K., Englhauser J., Gruber R., Haberl F., Hartner G., Hasinger G., Pfeffermann E., Pietsch W., Predehl P., et al., 2000, VizieR Online Data Catalog, 9029, 0
- Wadadekar Y., Kembhavi A., 1999, AJ, 118, 1435
- White R. L., Becker R. H., Gregg M. D., Laurent-Muehleisen S. A., Brotherton M. S., Impey C. D., Petry C. E., Foltz C. B., Chaffee F. H., Richards G. T., Oegerle W. R., Helfand D. J., McMahon R. G., Cabanela J. E., 2000, ApJ, 126, 133
- Wilkes B. J., Kuraszkiewicz J., Green P. J., Mathur S., McDowell J. C., 1999, ApJ, 513, 76
- Winkler H., 1992, MNRAS, 257, 677
- Wisotzki L., 2000, A&A, 353, 861
- Wisotzki L., Christlieb N., Bade N., Beckmann V., Köhler T., Vanelle C., Reimers D., 2000, A&A, 358, 77
- Wu X., Han J. L., 2001, A&A, 380, 31
- Zel'Dovich Y. B., Novikov I. B., 1964, Dokl. Akad. Nauk. SSSR, 158, 811
- Zheng W., Kriss G. A., Telfer R. C., Grimes J. P., Davidsen A. F., 1997, ApJ, 475, 469
- Zhou H., Wang T., 2002, Chinese Journal of Astronomy and Astrophysics, 2, 501
- Zickgraf F.-J., Engels D., Hagen H.-J., Reimers D., Voges W., 2003, A&A, 406, 535

Danksagung

Es ist schon ein schönes Stück Arbeit mit der Diplomarbeit. Das beschäftigt nicht nur mich als Verfasser selbst, sondern sorgte ich damit bei einigen Menschen für mehr Beschäftigung. Mit deren Hilfe schaffte ich es, dieses Werk auf die Beine zu stellen.

Ohne jeden Zweifel sind meine Frau Mareen und unsere Tochter Lisa die beiden wichtigsten Motivatoren für das Durchhalten in schwierigen Phasen. Die Unterstützung war nötigt und manchmal auch Ansporn, es noch besser zu machen. Auch wenn es schon mal heiß herging, so ist es am Ende ja doch erfolgreich geschafft. Zuversicht habe ich immer noch ausreichend für die nächsten auftauchenden Hürden. Danke Mareen und Lisa, ich liebe Euch! Meine Familie und Freunde (Wischekeiler) haben auch einen nicht wiegbaren Wert daran, aber das ist wohl bei den Meisten so. Die emotionale Seite ist jedoch nur ein Teil der Medaille.

Der wissenschaftliche Aspekt war ja das Hauptziel des Studiums und der beruflichen Entwicklung. Als Anfänger habe ich häufig gesehen, wie leicht es den "alten Hasen" fällt, irgendwelche Probleme zu lösen, so dass ich froh bin, hier und da einen guten Rat bekommen zu haben. Von Herrn Prof. Dr. Dieter Reimers bin ich das gesamte Studium hindurch mehr oder weniger direkt begleitet worden. Von den Anfängervorleseungen, über die Spezialvorleseungen, die Prüfungen bis hin zur Betreuung der Diplomarbeit. Diesen Einfluss auf meine Diplomarbeit und die persönliche Entwicklung weiss ich erst über Jahre hinweg voll zu schätzen. Danke! Die Professoren des Fachbereichs Physik waren sowieso die besten Wegbereiter für den erfolgreichen Abschluss des Studiums.

Die Extragalaktik fasziniert mich schon seit langer Zeit. Da lag es nahe, bei der Diplomarbeit ein entsprechendes Thema zu wählen. Durch Dr. Dieter Engels wurde dann auch ein Thema angeboten, das wie die Faust auf's Auge passte. Er hat es über ein Jahr lang geschafft, meine Fragen, Probleme und Sorgen geduldig anzuhören und weiterhelfend zu beantworten. Er brachte mich immer wieder zurück auf die richtige Spur, falls es mal wieder nicht so lief. Danke!

Klappern - sprich die Tastatur zu quälen - gehört zum Handwerk, oder besser gesagt, Dr. Björn Kuhlbrodt und Dr. Hans-Jürgen Hagen immer wieder zu löchern, wie ich Dies oder Das anstellen muss, damit alles so läuft, wie ich es will. Das hielt bis zum letzten Tag an. Björn sorgte dazu noch für 'ne fehlerlosere, lesbarere Version der Diplomarbeit. Danke!

Es gab noch Viele, die immer freundlich und hilfreich auf meine Sorgen reagiert haben, daher gilt auch ihnen allen mein Dank.

Hamburg, den 2. Dezember 2003

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Nach der Begutachtung verbleibt die vorliegende Arbeit in der Bibliothek. Mit der zukünftigen Ausleihe der Diplomarbeit bin ich einverstanden.