

Evolution and Impact of Cosmic Magnetic Fields

Robi Banerjee University of Hamburg

Collaborators: Dominik Schleicher (Göttingen), C. Federrath (Lyon, HD), Karsten Jedamzik (Montpellier), R. Klessen (Heidelberg), J. Schober (Heidelberg), S. Sur (Heidelberg)

Observed Magnetic Fields

galactic B-fields (e.g. R.Beck 2001) large scale component: ~ 4μ G total field strength: ~ 6μ G

Magnetic fields are observed on all scales

magnetic polarization measurements in the Pipe nebula F.O.Alves, Franco, Girart 2008

Observed Magnetic Fields

Observed Magnetic Fields

Generation of Primordial Fields

Possible generation of primordial magnetic fields (e.g. Grasso & Rubinstein 2001; Widrow 2003; Widrow et al. 2011)

- during cosmic inflation (e.g. Turner & Widrow 1998)
- during cosmic phase transitions
 - electroweak PT (t ~ 10^{-10} sec, T ~ 100 GeV)
 - (e.g. Baym et al. 1996)
 - QCD PT (T ~ 100 MeV)

(e.g. Quashnock et al. 1989; Cheng & Olinto 1994; Sigl et al. 1997)

Generation of Primordial Fields

Possible generation of primordial magnetic fields (e.g. Grasso & Rubinstein 2001; Widrow 2003; Widrow et al. 2011)

- during cosmic inflation (e.g. Turner & Widrow 1998)
- during cosmic phase transitions
 - electroweak PT (t ~ 10^{-10} sec, T ~ 100 GeV)
 - (e.g. Baym et al. 1996)
 - QCD PT (T ~ 100 MeV)

(e.g. Quashnock et al. 1989; Cheng & Olinto 1994; Sigl et al. 1997)

- \Rightarrow causal process
- ⇒ coherence length limited by Hubble length at epoch of generation

Subsequent evolution

• dilution by cosmic expansion:

 $B \propto a^{-2}$

assumption: flux freezing (no dynamic damping/ amplification)

 but: damping/amplification is important (Jedamzik et al. 98, Subramanian & Barrow 98, Banerjee & Jedamzik 2003/2004, Schleicher et al. 2010, Sur et al. 2010)

MHD equations on an expanding background:

$$\frac{\partial \rho}{\partial t} + \frac{1}{a} \nabla \cdot \left(\left(\rho + p \right) \mathbf{v} \right) + 3 H \left(\rho + p \right) = \frac{6}{a} H \xi \left(\nabla \cdot \mathbf{v} \right) - \chi \nabla \cdot \mathbf{q} ,$$

$$\begin{split} \frac{1}{a} \left(\frac{\partial}{\partial t} + \frac{1}{a} \left(\mathbf{v} \cdot \nabla \right) + H \right) \mathbf{v} + \frac{1}{a} \frac{\mathbf{v}}{\rho + p} \frac{\partial p}{\partial t} + \frac{1}{a^2} \frac{\nabla p}{\rho + p} + \frac{1}{a^2} \left(\frac{\mathbf{B} \times (\nabla \times \mathbf{B})}{4\pi \ (\rho + p)} \right) &= \\ \frac{1}{a^3} \frac{\nu}{\rho + p} \left(\nabla^2 \mathbf{v} + \frac{1}{3} \nabla \left(\nabla \cdot \mathbf{v} \right) \right) + \frac{1}{a^3} \frac{\xi}{\rho + p} \nabla \left(\nabla \cdot \mathbf{v} \right) - \frac{1}{\rho + p} \left(\frac{\partial}{\partial t} + 5 H \right) \chi \mathbf{q} , \\ \frac{1}{a} \left(\frac{\partial}{\partial t} + 2 H \right) \mathbf{B} = \frac{1}{a^2} \nabla \times \left(\mathbf{v} \times \mathbf{B} \right) \end{split}$$

- v, ξ viscosity; χ , q heat conductivity/heat flux
- *H*, *a* Hubble paramter/scale factor \Rightarrow cosmic expansion

assumption: infinite conductivity \implies large Prandtl numbers

MHD equations on an expanding background with super co-moving variables* (e.g. Enqvist 98):

$$\begin{split} \frac{\partial \tilde{\rho}}{\partial \tilde{t}} + \nabla \cdot \left(\tilde{\rho} \, \tilde{\mathbf{v}} \right) &= 0 \quad , \\ \frac{\partial \tilde{\mathbf{v}}}{\partial \tilde{t}} + \left(\tilde{\mathbf{v}} \cdot \nabla \right) \tilde{\mathbf{v}} + \frac{1}{\tilde{\rho}} \nabla \tilde{p} + \frac{1}{4\pi \tilde{\rho}} \tilde{\mathbf{B}} \times \left(\nabla \times \tilde{\mathbf{B}} \right) &= -\tilde{\mathbf{s}} \quad , \\ \frac{\partial \tilde{\epsilon}}{\partial \tilde{t}} + \nabla \cdot \left(\tilde{\epsilon} \, \tilde{\mathbf{v}} \right) + \tilde{p} \left(\nabla \cdot \tilde{\mathbf{v}} \right) &= -\tilde{\Gamma} \quad , \\ \frac{\partial \tilde{\mathbf{B}}}{\partial \tilde{t}} - \nabla \times \left(\tilde{\mathbf{v}} \times \tilde{\mathbf{B}} \right) &= 0 \quad . \end{split}$$

 \Rightarrow no Hubble-expansion \Rightarrow same form than non-relativistic MHD equations

Further assumptions:

- incompressible MHD:
 - $v, v_{\rm A} \ll v_{\rm s}$

 $v_A < v_s$ if $B < 5x10^{-5}$ G at recombination

$$\begin{split} \frac{\partial \mathbf{v}}{\partial t} &+ (\mathbf{v} \cdot \nabla) \mathbf{v} - (\mathbf{v}_{\mathrm{A}} \cdot \nabla) \mathbf{v}_{\mathrm{A}} = \mathbf{f}, \\ \frac{\partial \mathbf{v}_{\mathrm{A}}}{\partial t} &+ (\mathbf{v} \cdot \nabla) \mathbf{v}_{\mathrm{A}} - (\mathbf{v}_{\mathrm{A}} \cdot \nabla) \mathbf{v} = \nu \nabla^{2} \mathbf{v}_{\mathrm{A}}, \end{split}$$

dissipation:

$$\mathbf{f} = \begin{cases} \eta \nabla^2 \mathbf{v} & l_{\mathrm{mfp}} \ll l, \\ -\alpha \mathbf{v} & l_{\mathrm{mfp}} \gg l, \end{cases}$$

Reynolds number:

$$R_e(l) = \frac{v^2/l}{|\mathbf{f}|} = \begin{cases} \frac{vl}{\eta} & l_{\rm mfp} \ll l\\ \frac{v}{\alpha l} & l_{\rm mfp} \gg l, \end{cases}$$

 \Rightarrow decay via MHD turbulence

$$E \approx \int d\ln kk^3 (\langle |\boldsymbol{v}_k|^2 \rangle + \langle |\boldsymbol{v}_{\mathrm{A},k}|^2 \rangle) \equiv \int d\ln kE_l,$$

 E_k

quasi-stationary transfer of energy in k-space \Rightarrow Kolmogorov Turbulence

$$\frac{\mathrm{d}E_l}{\mathrm{d}t} \approx \frac{E_l}{\tau_l} \approx \mathrm{const}(l)$$

spectra of turbulence

Kolmogorov ('41): $au_{\mathrm{K}} = l/v_l$

Iroshnikov-Kraichnan ('64/'65): $au_{\rm IK} = (l/v_l) (v_{{\rm A},L}/v_l)$

$$E_k/k \propto \begin{cases} k^{-5/3} & :\\ k^{-3/2} & : \end{cases}$$

- : unmagnetized
 - : magnetized

turbulent decay: numerical simulations

decay laws

• assume initial spectrum on large scales (l > L):

$$E_k \approx E_0 \left(\frac{k}{k_0}\right)^n = E_0 \left(\frac{l}{L_0}\right)^{-n} \quad \text{for } l > L_0$$

• with: $v_l = \sqrt{E_l}$:

increase of coherence length:

$$E \approx E_0 \left(\frac{t}{\tau_0}\right)^{-2n/(2+n)}$$
$$L \approx L_0 \left(\frac{t}{\tau_0}\right)^{2/(2+n)}$$

decay laws

• decay law:

$$E \approx E_0 \left(\frac{t}{\tau_0}\right)^{-2n/(2+n)}$$

• growths of coherence length:

$$L \approx L_0 \left(\frac{t}{\tau_0}\right)^{2/(2+n)}$$

Helical Fields

• Helicity (measures complexity of the field):

$$\mathcal{H} \equiv \frac{1}{V} \int_{V} \mathrm{d}^{3} x \, \mathbf{A} \cdot \mathbf{B}$$

is conserved (no resistivity)

• maximal helical field: $H \sim B^{2} L \approx E L$

energy decay:

$$E \approx E_0 \left(\frac{t}{\tau_0}\right)^{-2/3}$$

inverse cascade:
 $L \approx L_0 \left(\frac{t}{\tau_0}\right)^{2/3}$

• Fields with maximum helicity: $\mathcal{H}_{max} \approx \langle B^2 L \rangle \approx (8\pi) EL$

• decay law:

$$E \approx E_0 \left(\frac{t}{\tau_0}\right)^{-2}$$

• growths of coherence length:

 $L \approx L_0 \left(\frac{t}{\tau_0}\right)^{2/3}$ inverse cascade

Evolution of small scale random magnetic fields

no initial helicity

with max. initial helicity

Evolution equation:

$$\tau_L \approx \frac{L(T)}{v_L(T)} \approx \frac{1}{H(T)} \approx t_{\rm H}$$

turbulent regime ($R_e \gg 1$):

 $v_L(T) = v_{\mathrm{A},L}(T)$

viscous regime ($R_e < 1$):

$$v_L(T) = \frac{v_{\mathrm{A},L}^2(T) L}{\eta(T)}$$

for $l_{\rm mfp} \ll L$

combine with cosmic evolution

assume magneto-genesis at EW-PT ($T_{gen} = 100 \text{ GeV}$)

combine with cosmic evolution

assume magneto-genesis at QCD-PT ($T_{gen} = 100 \text{ MeV}$)

combine with cosmic evolution

assume magneto-genesis at QCD-PT ($T_{gen} = 100 \text{ MeV}$)

Cluster fields of primordial origin?

combine with cosmic evolution

present day field strength and coherence length

combine with cosmic evolution

 Magnetic Jeans mass: (Subramanian & Barrow 1998)

$$M_J^B \sim 10^{10} M_{\odot} \left(\frac{B_0}{3 \text{ nG}}\right)^3$$

• Ambipolar diffusion heating:

$$L_{\rm AD} = \frac{\eta_{\rm AD}}{4\pi} \left| \left(\nabla \times \vec{B} \right) \times \vec{B} / B \right|^2$$

(Sethi & Subramanian 2005, Schleicher, Banerjee & Klessen 2008)

• Smallest scale: (Jedamzik et al. 1998, Subramanian & Barrow 1998) • $k_{max} \sim 234 \text{ Mpc}^{-1} \left(\frac{B_0}{1 \text{ nG}}\right)^{-1} \left(\frac{\Omega_m}{0.3}\right)^{1/4}$ × $\left(\frac{\Omega_b h^2}{0.02}\right)^{1/2} \left(\frac{h}{0.7}\right)^{1/4}$,

Ambipolar Diffusion

- lons are coupled to the magnetic field.
- Neutrals are indirectly coupled to the magnetic field by collisions with the ions.
- The coupling is not perfect: Sometimes they diffuse through the field lines
- Magnetic energy can be dissipated by friction between ions and neutrals.

$$egin{aligned} L_{ ext{ambi}} &= rac{
ho_n}{16\pi^2 \gamma
ho_b^2
ho_i} \left| \left(
abla imes ec{B}
ight) imes ec{B}
ight|^2 \ & \gamma &= rac{rac{1}{2} n_H \langle \sigma v
angle_{ ext{H}^+, ext{H}} + rac{4}{5} n_{ ext{He}} \langle \sigma v
angle_{ ext{H}^+, ext{He}}}{m_H \left[n_{ ext{H}} + 4 n_{ ext{He}}
ight]} \end{aligned}$$

Thermal / magnetic Jeans masses: Critical mass scale for gravity to overcome thermal / magnetic pressure. Both are significantly increased in the presence of strong magnetic fields.

Schleicher et al. (2009)

Ambipolar diffusion:

Modification of primordial star formation \Rightarrow constraints from the optical depth

B-Field amplification

Small-scale dynamo

(Batchelor 1950, Kazantsev 1968, see also Brandenburg & Subramanian 2005 and Jennifer Schober's talk)

- exponential growth of weak seed fields
- growth rate depends on magnetic Reynolds number $R_m : \gamma \propto R_m^{-1/2}$
- mag. spectrum: $E_{\text{mag},k} \propto k^{3/2}$
- saturation at $E_{\text{mag}} \sim 0.1 \ E_{\text{kin}}$

B-Field amplification

B-fields during compression

- maximum growth by adiabatic compression: $B \propto \rho^{2/3}$
- small-scale dynamo works in cluster forming models (e.g. Dolag et al. 1999, 2000; Xu et al. 2009, 2010)
- depends on numerical resolution

- turbulent infall motions (e.g. Abel et al. 2002, Greif et al. 2008)
- baryonic core modelled on a supercritical hydrostatic sphere:
 - $M_{\text{baryon}} = 1500 \text{ M}_{\text{sol}}$
 - $\rho_0 = 5 \times 10^{-20} \text{ g cm}^{-3}$
 - weak random field: B = 1nG, $\beta = 10^{10}$
 - transonic turbulence: $v_{rms} = 1.1 \text{ km sec}^{-1}$

characteristic length: **Jeans length**: $\lambda_{\rm J} = \left(\frac{\pi c_{\rm s}^2}{G \rho}\right)^{1/2}$

 turbulent infall motions (e.g. Abel et al. 2002, Greif et al. 2008)

- baryonic core modelled on a supercritical hydrostatic sphere:
 - $M_{\rm baryon} = 1500 {\rm M}_{\rm sol}$
 - $\rho_0 = 5 \times 10^{-20} \text{ g cm}^{-3}$
 - weak random field: $B = 1nG, \beta = 10^{10}$
 - transonic turbulence: $v_{rms} = 1.1 \text{ km sec}^{-1}$

characteristic length: **Jeans length**: $\lambda_{\rm J} = \left(\frac{\pi c_{\rm s}^2}{G \rho}\right)^{1/2}$

• analyse data within decreasing Jeans volume:

$$V_{\mathrm{J}}=4\pi(\lambda_{\mathrm{J}}/2)^3/3$$

• use dimensionless time:

$$\tau = \int \frac{1}{t_{\rm ff}(t)} \, dt$$

• free fall time $t_{\rm ff} = \left(3\pi/32\,G\,\left<\rho(t)\right> \right)^{1/2}$

• growth rate depends on R_m, i.e. resolution:

 $R_m \varpropto N_J^{4/3}$ (e.g. Haugen et al. 2004)

N_J: number of grid cells per local Jeans length; realization with adaptive mesh refinement (AMR)

• minimum resolution: ~ 30 grid cells per Jeans length

Magnetic field structure

Federrath et al.,2011

Turbulence Properties & Magnetic Field spectra

Summary

- primordial magnetic fields can be strongly damped/ amplified during the cosmic evolution
- \bullet turbulent damping in the regime where $v_A \sim v$
- exponential amplification by the small scale dynamo when $v_A \ll v$ (works also very early epochs?)
- primordial fields influence thermal evolution of the early Universe (e.g. primordial star formation)

Don't ignore Magnetic Fields!

The End