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Complexity of physical processes (gravity, 
turbulence, feedback) requires numerical 
simulations to study star formation

Motivation
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• ISM: hot ionized gas, warm atomic gas, cold molecular gas, dust
• Irregular, inhomogeneous distribution
• highly turbulent
• magnetized
• Present day star formation happens in Giant Molecular Clouds 
• properties of GMC: density ~102-3 cm-3, size ~ tens pc, mass ~ 104-6 Msol
• composition: 70% hydrogen, 1% dust (mass)
• e.g. nearby Orion nebula (d ~ 400 pc)

Formation of Molecular Clouds
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Field, Goldsmith, Habing 1969

Thermal Instability
Formation of dense, cold clouds out of the warm 
medium through thermal instability (Field 1965)?

Note: 
MJeans(warm gas) >> Mcloud

heating (UV, cosmic ray) 
and cooling (atomic and 
molecular line emission, 
gas-dust coupling) 
regulate 
thermodynamics

necessary 
condition for TI
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Thermal Instability
main cooling & heating 
processes

equilibrium pressure / 
temperature

Koyama & Inutsuka ‘00

Koyama & Inutsuka ‘02

simplification:
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Magnetic Fields

magnetic polarization measurements in the Pipe nebula
F.O.Alves, Franco, Girart 2008

galactic B-fields (e.g. R.Beck 2001)
large scale component: ~ 4µG
total field strength: ~ 6µG

The ISM is permeated with magnetic fields

M51
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Magnetic Fields
magnetic criticality

= self-gravity / magnetic support

critical value:

uniform disc 
Nakano & Nakamura 1978

flattened collapsing structure
Mouschovias & Spitzer 1976

but: Ambipolar diffusion could allow
initial sub-critical cores to collapse 
(Mouoschovias; Shu)

mass-to-flux ratio:
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3D simulations with AMR code FLASH
Large scale converging flows

Model parameter:
• Lbox = 256 pc, Δxmin = 0.03 pc
• linf = 112 pc, rinf = 32 pc
• vinf = 13.9 km/sec = 2.44 Ma

• density: n = 1 cm-3

• Minf = 2.3x104 Msol

• T = 5000 K
• MJeans = 107 Msol

• Bx = 1-4µG aligned with the flow
• β = 17.3 (B/1µG)-2

• µ = 3.33 (B/1µG)-1 µcrit

• tcrit = 5.4 Myr (B/1µG)
from Vazquez-Semadeni et al. 2007

Formation of Molecular Clouds
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Numerical Method

Ideal MHD + self-gravity + ideal gas + heating & cooling

5000 K

20 K

Koyama & Inutsuka ‘02
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Formation of Molecular Clouds
the non-magnetic case

edge-on view face-on view
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Formation of Molecular Clouds
the non-magnetic case

edge-on view face-on view
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Formation of Molecular Clouds

main properties of MCs:

• highly patchy and clumpy
• high fraction of substructure
• cold dense molecular clumps 
   coexist with warm atomic gas
• not a well bounded entity
• dynamical evolution (different 
   star formation modes: from 
   low mass to high mass SF?)
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Formation of Molecular Clouds
the weakly magnetized (Bx = 1µG) case

edge-on view face-on view
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Formation of Molecular Clouds
with random component: Bx = 3µG + δb = 3µG

face-on view



Robi Banerjee, USM Colloquium, Oct 27 2010

Formation of Molecular Clouds
with random component: Bx = 3µG + δb = 3µG

face-on view
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Formation of Molecular Clouds

Morphology of the molecular cloud and star formation 
efficiency depends on the strength of the magnetic field

B = 0 B = 1µG B = 3µG

B = 4µG B = 3µG, δb = 3µG B = 3µG, δb = 6µG
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Formation of Molecular Clouds
Influence of Ambipolar Diffusion: Bx = 3µG (super-critical)

Ideal MHD with AD
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Formation of Molecular Clouds
Influence of Ambipolar Diffusion: Bx = 4µG (critical)

Ideal MHD with AD
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Formation of Molecular Clouds
Influence of Ambipolar Diffusion

super-critical critical

Vazquez-Semadeni et al. in preparation
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Formation of Molecular Clouds
Influence of Ambipolar Diffusion

super-critical critical

• Ambipolar diffusion is not a major player 
  for star formation

Vazquez-Semadeni et al. in preparation
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Formation of Molecular Clouds
morphology and clump evolution

10 pc

• clumps growth by outward 
   propagation of boundary 
   layers and 
• coalescence at later times

• MCs are inhomogeneous 
• cold clumps embedded in 
  warm atomic gas 
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Formation of Molecular Clouds
morphology and clump evolution

10 pc

• clumps growth by outward 
   propagation of boundary 
   layers and 
• coalescence at later times

• MCs are inhomogeneous 
• cold clumps embedded in 
  warm atomic gas 
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Formation of Molecular Clouds
clump morphology 

• cold clumps are in near pressure equilibrium  
  (ram+thermal) with their warm surroundings
• in-falling gas streams along field lines

R.B, E.Vazquez-Semadeni, P.Hennebelle, R.Klessen 2009
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Formation of Molecular Clouds

• large scatter of magnetic 
  field strengths: 
  sub- and super-critical  
  cores exist
• median slope: B ∝ n0.5

 (e.g. Crutcher 1999)

• strong correlation of gas 
streams and magnetic field 
lines 

R.B, E.Vazquez-Semadeni, P.Hennebelle, R.Klessen 2009
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Formation of Molecular Clouds

time
centre of the cloud      
      birthplace for 
massive stars? 
(eg. Zinnecker & Yorke 2007)

global contraction phase

Vazquez-Semadeni et al. 2008

comparison of core properties 
with observation of Cygnus X 
by Motte et al 2007
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•Initial data from Tilley & 
Pudritz 2004: ZEUS 
simulations of core 
formation within a 
supersonic turbulent 
environment
•L  = 0.32 pc, Mtot = 105 Msol

•Follow the collapse of the 
densest most massive 
region: ~ 23 Msol

•Final resolution: ~ Rsol

  (27 refinement levels)

Collapse of turbulent cores
SF out of turbulent 
molecular clouds 
(e.g. Mac Low & Klessen 2004)
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R.B., Pudritz & Anderson 2006

• Filament with an attached sheet
• small disk within the filament (perpendicular)
• adiabatic (optically thick) core
• very efficient gas accretion through the filament

Collapse of turbulent cores
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• Very high accretion rates through dense filaments:
   up to 10-3 - 10-2 Msol/year
• Mass accretion rates are higher than limits from radiation pressure     
   of massive stars (e.g. Wolfire & Cassinelli 1987: 10-3 Msol/year)

Formation of massive stars



Herschel Obs.: RCW 120

Ionization feedback from massive stars
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3D Simulations of collapsing cloud 
cores with ionization feedback 
from young massive stars 

Massive Star Formation: Dynamics of HII Regions

•massive core with Mcore = 1000 Msol

•flat core with r = 0.5 pc and ρ ~ r-1.5

•initial core rotation with β = 0.05
•accreting sink particles  ⇒  luminosity and  
temperature using ZAMS (Paxton 2004)
•highest grid resolution ~ 100 AU 
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Disk edge on Disk plane

Simulations by Thomas Peters (ITA)

Massive Star Formation: Dynamics of HII Regions
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Disk edge on Disk plane

Simulations by Thomas Peters (ITA)

Massive Star Formation: Dynamics of HII Regions
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Dynamics of the H II Region and Outflow
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ionization drives bipolar outflow
pressure-driven expansion of shell
thin-shell instability leads to fingers
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Dynamics of the H II Region and Outflow
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size and morphology of H II region is highly variable
cometary H II region totally reverses within less than 10 kyr
changes like this have been observed!
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Th. Peters et al. 2010a/c

• ionization feedback does not shut off accretion
• fragmentation-induced starvation
• massive stars form in cluster
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Peters et al. 2010b
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Peters et al. 2010b

morphologies from De Pree et al. 2005

• only clustered SF match 
observed statistics

morphology at different 
viewing angles
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density magnetic energy

The magnetized case

Massive Star Formation: Dynamics of HII Regions

Peters et al. 2010d
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The magnetized case

Massive Star Formation: Dynamics of HII Regions

MHD

hydro

• suppression of fragmentation
• most massive star is more massive

Peters et al. 2010d
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Magnetic Outflows during Massive Star Formation

weak magnetic field
µ = 26 µcrit

strong magnetic field
µ = 2.6 µcrit

Daniel Seifried (ITA) in prep.



Supernovae feedback

HST: Crab Nebula



Supernovae feedback

Modeling of SN using sink particle properties:
• Msink > 100 Msol 
• sink age > 6 Myr
➞ kinetic energy injection 1051 erg @ rSN = 1pc  

no feedback



Supernovae feedback

edge-on view face-on view



Supernovae feedback
cloud disruption?

• cloud stays bound for ~ 20 Myr

10 SNs / 20 Myr



Supernovae feedback
cloud disruption?

dense gas: n > 100 cm-3

cloud region

RB et al. in prep.

• looses ~ 30% of its peak mass, but ...



Supernovae feedback
effect on star formation

• ... star formation continues

with SN feedback



Supernovae feedback
effect on star formation

• ... star formation continues
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Summary

• Molecular clouds can form at the cross section of 
  converging flows by thermal instability
• MCs are dynamic objects with no distinct boundaries 
  where warm and cold gas co-exist  
• Ambipolar diffusion has only little influence on star 
  formation
• Regions of massive star formation: rapid accretion 
  through dense, unstable flows 
• Ionization feedback does not shut off accretion
• HII regions are highly variable in time and shape
• SNe alone do not disrupt molecular clouds


