

Modelling star formation: From Molecular Clouds to Massive Stars

Robi Banerjee

University of Heidelberg (ITA)

Collaborators:

Ralf Klessen, Paul Clark, Christioph Federrath, Philipp Girichidis, Thomas Peters, Daniel Seifried (ITA) Enrique Vazquez-Semadeni, Roberto Galvan-Madrid (UNAM), Ralph Pudritz, Dennis Duffin (McMaster), Patrick Hennebelle (ENS), Eric Keto (CfA)

Motivation

Complexity of physical processes (gravity, turbulence, feedback) requires numerical simulations to study star formation

- ISM: hot ionized gas, warm atomic gas, cold molecular gas, dust
- Irregular, inhomogeneous distribution
- highly turbulent
- magnetized
- Present day star formation happens in Giant Molecular Clouds
- properties of GMC: density $\sim 10^{2-3}$ cm⁻³, size \sim tens pc, mass $\sim 10^{4-6}$ Msol
- composition: 70% hydrogen, 1% dust (mass)
- e.g. nearby Orion nebula (d ~ 400 pc)

Thermal Instability

Formation of dense, cold clouds out of the warm medium through thermal instability (Field 1965)?

Thermal Instability

Robi Banerjee, ITA Colloquium, May 6th. 2009

Magnetic Fields

galactic B-fields (e.g. R.Beck 2001) large scale component: ~ 4μ G total field strength: ~ 6μ G

The ISM is permeated with magnetic fields

magnetic polarization measurements in the Pipe nebula F.O.Alves, Franco, Girart 2008

Magnetic Fields

magnetic criticality

mass-to-flux ratio:

$$\mu \equiv \left(\frac{M}{\Phi}\right) = \text{self-gravity / magnetic support}$$

critical value:

$$\mu_{\rm crit} = \frac{1}{2\pi\sqrt{G}} \approx 0.16/\sqrt{G}$$

uniform disc Nakano & Nakamura 1978

 $\mu_{\rm crit} = 0.13/\sqrt{G}$

flattened collapsing structure Mouschovias & Spitzer 1976

but: Ambipolar diffusion could allow initial sub-critical cores to collapse (Mouoschovias; Shu)

3D simulations with AMR code FLASH

Large scale converging flows

from Vazquez-Semadeni et al. 2007

Model parameter:

- $L_{box} = 256 \text{ pc}, \Delta x_{min} = 0.03 \text{ pc}$
- $l_{inf} = 112 \text{ pc}, r_{inf} = 32 \text{ pc}$
- $v_{inf} = 13.9 \text{ km/sec} = 2.44 \text{ M}_a$
- density: $n = 1 \text{ cm}^{-3}$
- $M_{inf} = 2.3 \times 10^4 M_{sol}$
 - T = 5000 K
 - $M_{Jeans} = 10^7 M_{sol}$
 - $B_x = 1\text{-}4\mu G$ aligned with the flow
 - $\beta = 17.3 \ (B/1\mu G)^{-2}$
 - $\mu = 3.33 (B/1\mu G)^{-1} \mu_{crit}$
 - $t_{crit} = 5.4 \text{ Myr} (B/1\mu G)$

Numerical Method

$$\begin{aligned} \frac{\partial \rho}{\partial t} &+ \nabla \cdot (\mathbf{v} \, \rho) = 0 \\ \frac{\partial \rho \mathbf{v}}{\partial t} &+ \nabla \cdot (\rho \mathbf{v} \mathbf{v} - \mathbf{B} \mathbf{B}) + \nabla p_* = -\rho \mathbf{g} \\ \frac{\partial \rho E}{\partial t} &+ \nabla \cdot (\mathbf{v} \, (\rho E + p_*) - \mathbf{B} \, (\mathbf{v} \cdot \mathbf{B})) = \rho \mathbf{g} \cdot \mathbf{v} + \Gamma - \Lambda \\ \frac{\partial \mathbf{B}}{\partial t} &+ \nabla \cdot (\mathbf{v} \mathbf{B} - \mathbf{B} \mathbf{v}) = 0 \end{aligned}$$

$$\begin{aligned} E &= \frac{1}{2} v^2 + \varepsilon + \frac{1}{2} \frac{B^2}{\rho}, \\ p_* &= p + \frac{B^2}{2}, \\ p &= (\gamma - 1) \, \rho \epsilon \\ \mathbf{g} &= -\nabla \Phi \quad \Delta \Phi = 4\pi G \rho \end{aligned}$$

Ideal MHD + self-gravity + ideal gas + heating & cooling

Robi Banerjee, ITA Colloquium, May 6th. 2009

the non-magnetic case

edge-on view

face-on view

Robi Banerjee, USM Colloquium, Oct 27 2010

the non-magnetic case

0.00 Myr	0.00 Myr
Boxsize 80.0 pc	Boxsize 80.0 pc

face-on view

main properties of MCs:

- highly patchy and clumpy
- high fraction of substructure
- cold dense molecular clumps
 coexist with warm atomic gas
- not a well bounded entity
- dynamical evolution (different star formation modes: from low mass to high mass SF?)

the weakly magnetized ($B_x = 1\mu G$) case

0.00 Myr	0.00 Myr
Poweire 80.0 pe	Payriza 90.0 pa
Boxsize 60.0 pc	Boxsize 60.0 pc
edge-on view	face-on view

with random component: $B_x = 3\mu G + \delta b = 3\mu G$

face-on view

with random component: $B_x = 3\mu G + \delta b = 3\mu G$

0.00 Myr

Boxsize 120.0 pc

face-on view

Morphology of the molecular cloud and star formation efficiency depends on the strength of the magnetic field

Influence of Ambipolar Diffusion: $B_x = 3\mu G$ (super-critical)

0.00 Myr	0.00 Myr
Boxsize 80.0 pc	Boxsize 80.0 pc

Influence of Ambipolar Diffusion: $B_x = 4\mu G$ (critical)

with AD

Influence of Ambipolar Diffusion

Influence of Ambipolar Diffusion

 Ambipolar diffusion is **not** a major player for star formation

morphology and clump evolution

- MCs are inhomogeneous
- cold clumps embedded in warm atomic gas
- clumps growth by outward propagation of boundary layers and
- coalescence at later times

 $log(\rho [g cm^{-3}])$

-21

-22

-23

5 km/sec

morphology and clump evolution

- MCs are inhomogeneous
- cold clumps embedded in warm atomic gas
- layers and
 coalescence at later times

clump morphology

- cold clumps are in near pressure equilibrium (ram+thermal) with their warm surroundings
- in-falling gas streams along field lines

 strong correlation of gas streams and magnetic field lines

Robi Banerjee, USM Colloquium, Oct 27 2010

global contraction phase

-30 -20 -10 0 10 20 30 y [pc]

comparison of core properties with observation of Cygnus X by Motte et al 2007

Vazquez-Semadeni et al. 2008

Collapse of turbulent cores

molecular clouds (e.g. Mac Low & Klessen 2004)

- Initial data from *Tilley & Pudritz 2004*: ZEUS simulations of core formation within a supersonic **turbulent** environment
 L = 0.32 pc, M_{tot} = 105 M_{sol}
- •Follow the collapse of the densest most massive region: $\sim 23 \ M_{sol}$
- Final resolution: $\sim R_{sol}$ (27 refinement levels)

Collapse of turbulent cores

- Filament with an attached sheet
- small **disk** within the filament (perpendicular)
- adiabatic (optically thick) core
- very efficient gas **accretion** through the filament

Formation of massive stars

 Very high accretion rates through dense filaments: up to 10⁻³ - 10⁻² M_{sol}/year

 Mass accretion rates are higher than limits from radiation pressure of massive stars (e.g. Wolfire & Cassinelli 1987: 10⁻³ M_{sol}/year)

lonization feedback from massive stars

Herschel Obs.: RCW 120

3D Simulations of collapsing cloud cores with ionization feedback from young massive stars

- massive core with $M_{core} = 1000 M_{sol}$
- flat core with r=0.5~pc and $\rho\sim r^{-1.5}$
- initial core rotation with $\beta = 0.05$
- accreting sink particles \Rightarrow luminosity and temperature using ZAMS (*Paxton 2004*)
- highest grid resolution ~ 100 AU

Simulations by Thomas Peters (ITA)

Disk edge on

Disk plane

Simulations by Thomas Peters (ITA)

Disk edge on

Disk plane

Dynamics of the H II Region and Outflow

- ionization drives bipolar outflow
- pressure-driven expansion of shell
- thin-shell instability leads to fingers

Dynamics of the H II Region and Outflow

- size and morphology of H II region is highly variable
- ${\circ}\,$ cometary H II region totally reverses within less than $10\,kyr$
- changes like this have been observed!

Multiple protostars: Dynamics of the H II Region

- ionization feedback does not shut off accretion
- **fragmentation**-induced starvation
- massive stars form in cluster

H II Region Morphologies

Peters et al. 2010b

H II Region Morphologies

morphologies from De Pree et al. 2005

 Table 3

 Percentage Frequency Distribution of Morphologies

Туре	WC89	K94	Run A	Run B
Spherical/Unresolved	43	55	19	60 ± 5
Cometary	20	16	7	10 ± 5
core-halo	16	9	15	4 ± 2
Shell-like	4	1	3	5 ± 1
Irregular	17	19	57	$21~\pm~5$

 only clustered SF match observed statistics

morphology at different viewing angles

Peters et al. 2010b

The magnetized case

Peters et al. 2010d

magnetic energy

The magnetized case

- suppression of fragmentation
- most massive star is more massive

Magnetic Outflows during Massive Star Formation

weak magnetic field $\mu = 26 \mu_{crit}$

strong magnetic field $\mu = 2.6 \ \mu_{crit}$

HST: Crab Nebula

Modeling of SN using sink particle properties:

- $M_{sink} > 100 M_{sol}$
- sink age > 6 Myr
- \rightarrow kinetic energy injection 10⁵¹ erg @ $r_{SN} = 1pc$

edge-on view

face-on view

cloud disruption?

cloud stays bound for ~ 20 Myr

cloud disruption?

looses ~ 30% of its peak mass, but ...

effect on star formation

... star formation continues

effect on star formation

• ... star formation continues

Summary

- Molecular clouds can form at the cross section of converging flows by thermal instability
- MCs are dynamic objects with no distinct boundaries where warm and cold gas co-exist
- Ambipolar diffusion has only **little** influence on star formation
- Regions of massive star formation: rapid accretion through dense, unstable flows
- Ionization feedback does not shut off accretion
- Hll regions are highly **variable** in time and shape
- SNe alone do **not** disrupt molecular clouds